
Visibility in Computer Graphics

Jǐrı́ Bittner†§ and Peter Wonka§‡

†Center for Applied Cybernetics

Czech Technical University in Prague

§Insitute of Computer Graphics and Algorithms

Vienna University of Technology

‡Graphics, Visualization, and Usability Center

Georgia Institute of Technology

Abstract

Visibility computation is crucial for computer graphics from its very beginning. The

first visibility algorithms in computer graphics aimed to determine visible surfaces in a

synthesized image of a 3D scene. Nowadays there are many different visibility algorithms

for various visibility problems. We propose a new taxonomy of visibility problems that is

based on a classification according to the problem domain. We provide a broad overview

of visibility problems and algorithms in computer graphics grouped by the proposed tax-

onomy. The paper surveys visible surface algorithms, visibility culling algorithms, visibil-

ity algorithms for shadow computation, global illumination, point-based and image-based

rendering, and global visibility computations. Finally, we discuss common concepts of

visibility algorithm design and several criteria for the classification of visibility algorithms.

1



1 Introduction

Visibility is studied in computer graphics, architecture, computational geometry, computer vi-

sion, robotics, telecommunications, and other research areas. In this paper we discuss visibility

problems and algorithms from the point of view of computer graphics.

Computer graphics aims to synthesize images of virtual scenes by simulating the propa-

gation of light. Visibility is a crucial phenomenon that is an integral part of the interaction

of light with the environment. The first visibility algorithms aimed to determine which lines

or surfaces are visible in a synthesized image of a 3D scene. These problems are known as

visible lineandvisible surfacedetermination or ashidden lineandhidden surfaceremoval.

The classical visible line and visible surface algorithms were developed in the early days of

computer graphics in the late 60’s and the beginning of the 70’s (Sutherlandet al., 1974).

These techniques were mostly designed for vector displays. Later, with increasing availability

of raster devices the traditional techniques were replaced by the z-buffer algorithm (Catmull,

1975). Nowadays, we can identify two widely spread visibility algorithms: the z-buffer for

visible surface determination and ray shooting for computing visibility along a single ray. The

z-buffer and its modifications dominate the area of real-time rendering whereas ray shooting

is commonly used in the scope of global illumination methods. Besides these two elementary

methods there is a plethora of visibility algorithms for various specific visibility problems.

Several surveys of visibility methods have been published. The classical survey of Suther-

land, Sproull, and Schumacker (1974) covers ten traditional visible surface algorithms. This

survey was updated by Grant (1992) who provides a classification of visibility algorithms that

includes newer rendering paradigms such as distributed ray tracing. A survey of Durand (1999)

provides a comprehensive multidisciplinary overview of visibility techniques in various re-

search areas. A recent survey of Cohen-Or et al. (2002) summarizes visibility algorithms for

walkthrough applications.

In this paper we aim to provide a new taxonomy of visibility problems encountered in

computer graphics based on the problem domain. The taxonomy should help to understand

the nature of a particular visibility problem and provides a tool for grouping problems of sim-

2



ilar complexity independently from their target application. We provide a broad overview of

visibility problems and algorithms in computer graphics grouped by the proposed taxonomy.

The paper surveys visible surface algorithms, visibility culling algorithms for, visibility algo-

rithms for shadow computation, global illumination, point-based and image-based rendering,

and global visibility computations.

In contrast to the previous surveys, we focus on the common ideas and concepts rather than

algorithmic details. We aim to assist a potential algorithm designer in transferring the concepts

developed in the computer graphics community to solve visibility problems in other research

areas.

2 Taxonomy of visibility problems

Visibility is a phenomenon that can be defined by means of mutually unoccluded points: two

points are mutually visible if the line segment connecting them is unoccluded. From this

definition we can make two observations: (1) lines carry visibility, (2) two points can be visible

regardless of their distance.

The first observation says that the domain of a visibility problem is formed by the set of

lines through which the scene entities might be visible. We call this set theproblem-relevant

line set. The second observation says that visibility of scene entities is independent of their

spatial proximity.

2.1 Problem domain

The problem domain is given by the problem-relevant line set, i.e. by the set of lines involved

in the solution of the problem. Computer graphics deals with the following domains:

1. visibility along a line

2. visibility from a point

3. visibility from a line segment

3



4. visibility from a polygon

5. visibility from a region

6. global visibility

The domain description is independent from the dimension of the scene, i.e. the problem of

visibility from a point can be stated for 2D, 21
2
D, and 3D scenes. The actual domains however

differ depending on the scene dimension. For example, as we shall see later, visibility from a

polygon is equivalent to visibility from a region in 2D, but not in 3D.

The problem domains can further be categorized as discrete or continuous. A discrete

domain consists of a finite set of lines (rays), which is a common situation when the problem

aims at computing visibility with respect to a raster image.

2.1.1 The dimension of visibility problems

We assume that a line inprimal spacecan be mapped to a point inline space(Stolfi, 1991;

Pellegrini, 1997; Teller, 1992b; Durand, 1999). In 3D there are four degrees of freedom in

the description of a line and thus the corresponding line space is four-dimensional. Fixing

certain line parameters (e.g. direction), the problem-relevant line set, denotedL3
x, forms a

k-dimensional subset ofR4, where0 ≤ k ≤ 4. The superscript (3) expresses the dimension

of primal space, the subscript (x) corresponds to one of the problem domain classes:l for

visibility along a line,p for visibility from a point,s for visibility from a line segment,n for

visibility from a polygon,r for visibility from a region, andg for global visibility.

In 2D there are two degrees of freedom in the description of a line and the correspond-

ing line space is two-dimensional. Therefore, the problem-relevant line setL2
x forms ak-

dimensional subset ofR2, where0 ≤ k ≤ 2. An illustration of the concept of the problem-

relevant line set is depicted in Figure1.

For the purpose of this discussion we define the dimension of the visibility problem as the

dimension of the corresponding problem-relevant line set.

4



visibility visibility visibility
from a point from a segmentalong a line

Figure 1: Problem-relevant line sets in 2D.L2
l corresponds to a single point that is a mapping

of the given line.L2
p is formed by points lying on a line. This line is a dual mapping of the

pointp. L2
s is formed by a 2D subset induced by the intersection of dual mappings of endpoints

of the given segment.

2.2 Visibility along a line

The simplest visibility problems deal with visibility along a single line. The problem-relevant

line set is zero-dimensional, i.e. it is fully specified by the given line. The visibility along a line

problems can be solved by computing intersections of the given line with the scene objects.

The most common visibility along a line problem isray shooting(Arvo & Kirk , 1989).

Given a ray, ray shooting determines the first intersection of the ray with a scene object. A

similar problem to ray shooting ispoint-to-pointvisibility. Point-to-point visibility determines

whether the line segment between two points is unoccluded, i.e. the line segment has no

intersection with an opaque object in the scene. Another visibility along a line problem is

determining themaximal free line segmentson a given line. See Figure2 for an illustration of

typical visibility along a line problems.

5



A A

B

invisible

A

B

Figure 2: Visibility along a line. (left) Ray shooting. (center) Point-to-point visibility. (right)
Maximal free line segments between two points.

2.3 Visibility from a point

Lines intersecting a point in 3D can be described by two parameters. For example the lines

can be expressed by an intersection with a unit sphere centered at the given point. The most

common parametrization describes a line by a point of intersection with a (viewing) plane (see

Figure3).

x

y

viewing plane

view point

Figure 3: Visibility from a point. Lines intersecting a point can be described by a point of
intersection with a plane.

In 3D the problem-relevant line setL3
p is a 2D subset of the 4D line space. In 2DL2

p is a

1D subset of the 2D line space. Thus to solve visibility from a point in 3D (2D) accurately we

need to account for visibility along each line of the 2D (1D) set.

The typical visibility from a point problem isvisible surface determination(Foley et al.,

1990). Due to its importance for image synthesis visible surface determination covers the

majority of existing visibility algorithms in computer graphics. The problem ofpoint-to-region

visibility aims to classify a region as visible, invisible, or partially visible with respect to the

6



given point (Teller & Séquin, 1991). Another visibility from a point problem is the construction

of thevisibility map(Stewart & Karkanis, 1998), i.e. a graph describing the given view of the

scene including its topology.

2.4 Visibility from a line segment

Lines intersecting a line segment in 3D can be described by three parameters. One parameter

fixes the intersection of the line with the segment the other two express the direction of the

line. Thus we can imageLx
s as a 1D set ofLx

p that are associated with all points on the given

segment (see Figure4). The problem-relevant line setL3
s is three-dimensional andL2

s is two-

dimensional. An interesting observation is that in 2D, visibility from a line segment already

reaches the dimension of the whole line space.

L0

0.5L

L0

0.5L

L1
L1

1

0.5

0

0 0.5 1

line spacesegment

y

xx

y

u

u

object

plane
occluded

lines

Figure 4: Visibility from a line segment. Lines intersecting a line segment formL3
s. The

figure shows a possible parametrization that stacks up 2D planes. Each plane corresponds to
mappings of lines intersecting a point on the given line segment.

Thesegment-to-region visibility(Wonkaet al., 2000) is used for visibility preprocessing in

21
2
D scenes. Visibility from a line segment also arises in the computation of soft shadows due

to a linear light source (Heidrichet al., 2000).

2.5 Visibility from a polygon

In 3D, lines intersecting a polygon can be described by four parameters (Gu et al., 1997; Pel-

legrini, 1997). For example: two parameters fix a point inside the polygon, the other two

parameters describe a direction of the line. We can imagineL3
n as a 2D set ofL3

p associated

7



with all points inside the polygon (see Figure4). L3
n is a four-dimensional subset of the 4D

line space. In 2D, lines intersecting a polygon consists of sets that intersect the boundary line

segments of the polygon and thusL2
n is two-dimensional. Visibility from a polygon prob-

lems include computing a form-factor between two polygons (Goralet al., 1984), soft shadow

algorithms (Chin & Feiner, 1992), and discontinuity meshing (Heckbert, 1992).

Figure 5: Visibility from a polygon. The figure depicts boundary rays of line sets through
which the three polygons are visible.

2.6 Visibility from a region

Lines intersecting a volumetric region in 3D can be described by four parameters. Similarly

to the case of lines intersecting a polygon two parameters can fix a point on the boundary of

the region, the other two fix the direction of the line. ThusL3
r is four-dimensional and the

corresponding visibility problems belong to the same complexity class as the from-polygon

visibility problems. In 2D, visibility from a 2D region is equivalent to visibility from a polygon:

L2
r is a 2D subset of 2D line space.

A typical visibility from a region problem is the problem ofregion-to-regionvisibility (Teller

& Séquin, 1991) that aims to determine if the two given regions in the scene are mutually vis-

ible, invisible or partially visible (see Figure6). The region-to-region visibility problem arises

in the context of computing apotentially visible set(PVS), i.e. the set of objects potentially

visible from any point inside the given region.

8



primal space line space

B

A

B*

A*

Figure 6: Region-to-region visibility. Two regions and two occluders in a 2D scene. In line
space the region-to-region visibility can be solved by subtracting the set of lines intersecting
objectsA andB from lines intersecting both regions.

2.7 Global visibility

Global visibility problems pose no restrictions on the problem-relevant line set as they consider

all lines in the scene. ThusL3
g is four-dimensional andL2

g is two-dimensional. Although these

dimensions are equivalent to those of visibility from a region problems there is no given set of

reference points from which visibility is studied and thus there is no given priority ordering of

objects along each particular line. Therefore an additional parameter must be used to describe

visibility (e.g. visible objects) along each ray. Additionally, the global visibility problems

typically deal with a much larger sets of rays.

Global visibility problems include view space partitioning (Plantingaet al., 1990), com-

putation of the visibility complex (Pocchiola & Vegter, 1993), or visibility skeleton (Durand

et al., 1997).

2.8 Summary

The summary of the taxonomy of visibility problems is given in Table1. The classification

according to the dimension of the problem-relevant line set provides means for understanding

how difficult it is to compute and maintain visibility for a particular class of problems. For

example a data structure representing the visible or occluded parts of the scene for the visibility

from a point problem needs to partition 2DL3
p into visible and occluded sets of lines. This

observation conforms with the traditional visible surface algorithms that partition an image

into empty/nonempty regions and associate each nonempty region (pixel) with a visible object.

9



In this case the image representsL3
p as each point of the image corresponds to a line through

that point. To analytically describe visibility from a region a subdivision of 4DL3
r should be

performed. This is much more difficult than the 2D subdivision. Moreover the description of

visibility from a region involves non-linear subdivisions of both primal space and line space

even for polygonal scenes (Teller, 1992a; Durand, 1999). The classification also shows that

solutions to many visibility problems in 2D do not extend easily to 3D since they involve line

sets of different dimensions (Durand, 1999).

problem dimension of common
domain Ly

x problems

2D

visibility along a line 0
ray shooting
point-to-point visibility

visibility from a point 1
view around a point
point-to-region visibility

visibility from a line segment

2
region-to-region visibility
PVS

visibility from a polygon
visibility from a region
global visibility

3D

visibility along a line 0
ray shooting
point-to-point visibility

visibility from a point 2

visible (hidden) surfaces
point-to-region visibility
visibility map
hard shadows

visibility from a line segment 3
segment-to-region visibility
soft shadows
PVS in 21

2D scenes

visibility from a polygon
visibility from a region
global visibility

4

region-to-region visibility
PVS
aspect graph
soft shadows
discontinuity meshing

Table 1: Classification of visibility problems according to the dimension of the problem-
relevant line set.

3 Visibility problems and algorithms

This section provides an overview of representative visibility problems and algorithms. We

do not aim to give detailed descriptions of the algorithms. Instead we provide a catalog of

10



visibility algorithms structured according to the taxonomy. Within each class of the taxonomy

the algorithms are grouped according to the actual visibility problem or important algorithmic

features.

3.1 Visibility along a line

Ray shooting Ray shooting is the most common visibility along a line problem. Given a ray,

ray shooting determines the first intersection of the ray with a scene object. Ray shooting was

first used by Appel (1968) to solve the visible surface problem for each pixel of the image.

Ray shooting is the core of theray tracingalgorithm (Whitted, 1979) that follows light paths

from the view point backwards to the scene. Many recent methods use ray shooting driven by

stochastic sampling for more accurate simulation of light propagation (Kajiya, 1986; Arvo &

Kirk , 1990). A naive ray shooting algorithm tests all objects for intersection with a given ray

to find the closest visible object along the ray inΘ(n) time (wheren is the number of objects).

For complex scenes even the linear time complexity is very restrictive since a huge amount of

rays is needed to synthesize an image. An overview of acceleration techniques for ray shooting

was given by Arvo (1989). A recent survey was presented by Havran (2000).

Point-to-point visibility Point-to-point visibility is used within the ray tracing algorithm (Whit-

ted, 1979) to test whether a given point is in shadow with respect to a point light source.

This query is typically resolved by casting shadow rays from the given point towards the light

source. This process can be accelerated by preprocessing visibility from the light source (Haines

& Greenberg, 1986; Woo & Amanatides, 1990) (see Section3.2.5for more details).

3.2 Visibility from a point

Visibility from a point problems cover the majority of visibility algorithms developed in the

computer graphics community. We subdivide this section according to five subclasses: visible

surface determination, visibility culling, hard shadows, global illumination, and image-based

and point-based rendering.

11



3.2.1 Visible surface determination

Visible surface determination aims to determine visible surfaces in the synthesized image,

which is the most common visibility problem in computer graphics.

Z-buffer The z-buffer, introduced by Catmull (1975), is one of the simplest visible surface

algorithms. Its simplicity allows an efficient hardware implementation and therefore the z-

buffer is nowadays commonly available even on low cost graphics hardware. The z-buffer is

a discrete algorithm that associates a depth value with each pixel of the image. The z-buffer

performs discrete sampling of visibility and therefore the rendering algorithms based on the

z-buffer are prone to aliasing (Carpenter, 1984).

The z-buffer algorithm is notoutput sensitivesince it needs to rasterize all scene objects

even if many objects are invisible. This is not restrictive for scenes where most of the scene ele-

ments are visible, such as a single albeit complex object. For large scenes with high depth com-

plexity the processing of invisible objects causes significantoverdraw. Overdraw expresses

how many polygons are rasterized at a pixel (only the closest polygon is actually visible). The

overdraw problem is addressed by visibility culling methods that will be discussed in Sec-

tion 3.2.4.

List priority algorithms List priority algorithms determine an ordering of scene objects so

that a correct image is produced if the objects are rendered in this order. Typically objects

are processed in back-to-front order: closer objects are painted over the farther ones in the

frame buffer. In some cases no suitable order exists due to cyclic overlaps and therefore some

object(s) have to be split. The list priority algorithms differ according to which objects get

split and when the splitting occurs (Foley et al., 1990). Thedepth sort algorithmby Newell

et al. (1972) renders polygons in the frame buffer in the order of decreasing distance from

the view point. This is performed by partial sorting of polygons according to their depths

and resolving possible depth overlaps. A simplified variant of this algorithm that ignores the

overlap checks is called thepainter’s algorithmdue to the similarity to the way a painter might

paint closer objects over distant ones. Thebinary space partitioning(BSP) tree introduced by

12



Fuchs, Kedem, and Naylor (1980) allows the efficient calculation of visibility ordering among

static polygons in a scene seen from an arbitrary view point. Improved output-sensitive variants

of the algorithm generate a front-to-back order of polygons and an image space data structure

for correct image updates (Gordon & Chen, 1991; Naylor, 1992).

Area subdivision algorithms Warnock (1969) developed an area subdivision algorithm that

subdivides a given image area into four rectangles. In the case that visibility within the cur-

rent rectangle cannot be solved, the rectangle is recursively subdivided. The subdivision is

terminated when the area matches the pixel size. The algorithm of Weiler and Atherton (1977)

subdivides the image plane using the actual polygon boundaries. The algorithm does not rely

on a pixel resolution but it requires a robust polygon clipping algorithm.

Scan line algorithms The scan-line visibility algorithms extend the scan conversion of a

single polygon (Foley et al., 1990). They maintain an active edge table that indicates which

polygons span the current scan line. The scan line coherence is exploited using incremental

updates of the active edge table similarly to the scan conversion of a single polygon.

Ray casting Ray casting (Appel, 1968) is a visible surface algorithm that solves visibility

by ray shooting. More specifically by shooting rays through each pixel in the image. The

advantage of ray casting is that it is inherently output sensitive (Waldet al., 2001).

3.2.2 Visibility maps

A visibility map is a graph describing a view of the scene including its topology. Stewart and

Karkanis (1998) proposed an algorithm for the construction of approximate visibility maps

using dedicated graphics hardware. They use an item buffer and graph relaxation to determine

edges and vertices of visible scene polygons and their topology. Grasset et al. (1999) dealt with

some theoretical operations on visibility maps and their applications in computer graphics.

Bittner (2002a) uses a BSP tree to calculate and represent the visibility map.

13



3.2.3 Back face culling and view frustum culling

Back face culling aims to avoid rendering of polygons that are not facing the view point. View

frustum culling eliminates polygons that do not intersect the viewing frustum. These two

methods are heavily exploited in real-time rendering applications. Both techniques provide

simple decisions, but they do not account for occlusion. See Möller and Haines (1999) for a

detailed discussion.

3.2.4 Visibility culling

Visibility culling algorithms aim to accelerate rendering of large scenes by quickly culling

invisible parts of the scene. The final hidden surface removal is typically carried out using the

z-buffer. To avoid image artifacts visibility culling algorithms are usuallyconservative, i.e.,

they never classify a visible object as invisible. In real-time rendering applications the scene

usually consists of a large set of triangles. Due to efficiency reasons it is common to calculate

visibility for a group of triangles rather than for each triangle separately.

General scenes The z-buffer is a basic and robust tool for hidden surface removal, but it can

be very inefficient for scenes with a high depth-complexity. This problem is addressed by the

hierarchical z-bufferalgorithm developed by Greene et al. (1993). The hierarchical z-buffer

uses a z-pyramid to represent image depths and an octree to organize the scene. The z-pyramid

is used to test visibility of octree bounding boxes. Zhang et al. (1997) proposed an algorithm

that replaces the z-pyramid by ahierarchical occlusion mapand adepth estimation buffer.

This approach was further studied by Aila (2000).

Newer graphics hardware provides an occlusion test for bounding boxes (e.g. ATI, NVIDIA).

The problem of this occlusion test is that the result of such an occlusion query is not read-

ily available. A straightforward algorithm would therefore cause many unnecessary delays

(pipeline stalls) in the rendering. The focus of research has now shifted to finding ways of

ordering the scene traversal to interleave rendering and visibility queries in an efficient man-

ner (Heyet al., 2001; Klosowski & Silva., 2001).

14



Scenes with large occluders Another class of algorithms selects several large occluders and

performs visibility culling in object space. Hudson (1997) uses shadow volumes of each se-

lected occluder independently to check visibility of a spatial hierarchy. Coorg and Teller (1997)

track visibility from the view point by maintaining a set of planes corresponding to visibility

changes. Bittner et al. (1998) construct an occlusion tree that merges occlusion volumes of the

selected occluders.

Urban scenes Visibility algorithms for indoor scenes use a natural partitioning of architec-

tural scenes into cells and portals. Cells correspond to rooms and portals correspond to doors

and windows (Airey et al., 1990). Luebke and Georges (1995) proposed a simple conservative

cell/portal visibility algorithm for indoor scenes.

Wonka and Schmalstieg (1999) used occluder shadows and the z-buffer for visibility culling

in 21
2
D scenes and Downs et al. (2001) use occlusion horizons maintained by a binary tree for

the same class of scenes.

Terrains Terrain visibility algorithms developed in the GIS and the computational geometry

communities are surveyed by De Floriani and Magillo (1995). In computer graphics, Cohen-

Or et al. (1995) proposed an algorithm that reduces a visibility from a point problem in 21
2
D

to a series of problems in 11
2
D. Lee and Shin (1997) use vertical ray coherence to accelerate

rendering of a digital elevation map. Lloyd and Egbert (2002) use an adaption of occlusion

horizons (Downset al., 2001) to calculate visibility for terrains.

3.2.5 Hard shadows

The presence of shadows in a computer generated image significantly increases its realism.

Shadows provide important visual cues about position and size of an object in the scene. A

shadow due to a point light source and an object is the volume from which the light source is

hidden by the object. We discuss several important algorithms for computing hard shadows.

A detailed discussion of shadow algorithms can be found in (Woo et al., 1990) and (Möller &

Haines, 1999).

15



Ray tracing Ray tracing (Whitted, 1979) does not explicitly reconstruct shadow volumes.

Instead it samples points on surfaces using a point-to-point visibility query (see Section2.2)

to test if the points are in shadow. Tracing of shadow rays can be significantly accelerated by

using a light buffer introduced by Haines and Greenberg (1986). The light buffer is a 2D array

that associates with each entry a list of objects intersected by the corresponding rays. Woo and

Amanatides (1990) proposed to precompute shadowed regions with respect to the light source

and store this information within the spatial subdivision.

Shadow maps Shadow maps proposed by Williams (1978) provide a discrete representation

of shadows due to a single point light source. A shadow map is a 2D image of the scene as

seen from the light source. Each pixel of the image contains the depth of the closest object

to the light source. The algorithm constructs a shadow map by rendering the scene into a

z-buffer using the light source as the view point. Then the scene is rendered using a given

view and visible points are projected into the shadow map. The depth value of a point is

compared to the value stored in the shadow map. If the point is farther than the stored value it

is in shadow. This algorithm can be accelerated using graphics hardware (Segalet al., 1992).

Shadow maps can represent shadow due to objects defined by complex surfaces, i.e. any object

that can be rasterized into the shadow map is suitable. In contrast to ray tracing the shadow

map approach explicitly reconstructs the shadow volume and represents it in a discrete form.

Several techniques have been proposed to reduce the aliasing due to the discretization (Grant,

1992; Stamminger & Drettakis, 2002).

Shadow volumes The shadow volume of a polygon with respect to a point is a semi infinite

frustum. The intersection of the frustum with the scene bounding volume can be explicitly

reconstructed and represented by a set of shadow polygons bounding the frustum. Crow (1977)

proposed that these polygons can be used to test if a point corresponding to the pixel of the

rendered image is in shadow by counting the number of shadow polygons in front of and

behind the point. Heidmann (1991) proposed an efficient real-time implementation of the

shadow volume algorithm. Theshadow volume BSP(SVBSP) tree proposed by Chin and

16



Feiner (1989) provides an efficient representation of a union of shadow volumes of a set of

convex polygons. The SVBSP tree is used to explicitly compute lit and shadowed fragments

of scene polygons. An adaptation of the SVBSP method to dynamic scenes was studied by

Chrysanthou and Slater (1995). See Figure7 for an illustration of the output of the SVBSP

algorithm.

light source

Figure 7: A mesh resulting from subdividing the scene using a SVBSP tree. The darker patches
are invisible from the light source.

3.2.6 Global illumination

Beam tracing Thebeam tracingdesigned by Heckbert and Hanrahan (1984) casts a pyramid

(beam) of rays rather than shooting a single ray at a time. The resulting algorithm makes use

of ray coherence and eliminates some aliasing connected with the classical ray tracing.

Cone tracing The cone tracingproposed by Amanatides (1984) traces a cone of rays at a

time instead of a polyhedral beam or a single ray. In contrast to the beam tracing the algorithm

does not determine precise boundaries of visibility changes. The cones are intersected with the

scene objects and at each intersected object a new cone (or cones) is cast to simulate reflection

and refraction.

Bundle tracing Most stochastic global illumination methods shoot rays independently and

thus they do not exploit visibility coherence among rays. An exception is theray bundle

17



tracing introduced by Szirmay-Kalos (1998) that shoots a set of parallel rays through the scene

according to a randomly sampled direction. This approach allows to exploit ray coherence by

tracing many rays at the same time.

3.2.7 Image-based and Point-based rendering

Image-based and point-based rendering generate images from point-sampled representations

like images or point clouds. This is useful for highly complex models, which would otherwise

require a huge number of triangles. A point is infinitely small by definition and so the visibility

of the point samples is determined using a local reconstruction of the sampled surface that is

inherent in the particular rendering algorithm.

Image warping McMillan (1997) proposed an algorithm for warping images from one view

point to another. The algorithm resolves visibility by a correct occlusion compatible traversal

of the input image without using additional data structures like a z-buffer.

Splatting Most point-based rendering algorithms project points on the screen usingsplatting.

Splatting is used to avoid gaps in the image and to resolve visibility of projected points. Pfister

et al. (2000) use software visibility splatting. Rusinkiewicz et al. (2000) use a hardware ac-

celerated z-buffer and Grossman and Dally (1998) use the hierarchical z-buffer (Greeneet al.,

1993) to resolve visibility.

Random sampling Therandomized z-bufferalgorithm proposed by Wand et al. (2001) culls

triangles under the assumption that many small triangles project to a single pixel. A large

triangle mesh is sampled and visibility of the samples is resolved using the z-buffer. The

algorithm selects a sufficient number of sample points so that each pixel receives a sample

from a visible triangle with high probability.

18



3.3 Visibility from a line segment

We discuss visibility from a line segment in the scope of visibility culling and computing soft

shadows.

3.3.1 Visibility culling

Several algorithms calculate visibility in 21
2
D urban environments for a region of space using

a series of visibility from a line segment queries. The PVS for a given view cell is a union of

PVSs computed for all ’top-edges’ of the viewing region (Wonkaet al., 2000).

Wonka et al. (2000) use occluder shrinking and point sampling to calculate visibility with

the help of a hardware accelerated z-buffer. Koltun et al. (2001) transform the 21
2
D problem to

a series of 2D visibility problems. The 2D problems are solved using dual ray space and the

z-buffer algorithm. Bittner et al. (2001) use a line space subdivision maintained by a BSP tree

to calculate the PVS. Figure8 illustrates the concept of a PVS in a 21
2
D scene.

(a) (b) (c)

Figure 8: A PVS in a 21
2
D scene representing 8 km2 of Vienna. (a) A selected view cell and

the corresponding PVS. The dark regions were culled by hierarchical visibility tests. (b) A
closeup of the view cell and its PVS. (c) A snapshot of an observer’s view from a view point
inside the view cell.

3.3.2 Soft shadows

Heidrich et al. (2000) proposed an extension of the shadow map approach forlinear light

sources (line segments). They use a discrete shadow map enriched by avisibility channelto

19



render soft shadows at interactive speeds. The visibility channel stores the percentage of the

light source that is visible at the corresponding point.

3.4 Visibility from a polygon

Visibility from a polygon problems are commonly studied by realistic rendering algorithms

that aim to capture illumination due to areal light sources. We discuss the following problems:

computing soft shadows, evaluating form factors, and discontinuity meshing.

3.4.1 Soft shadows

Soft shadows appear in scenes with areal light sources. A shadow due to an areal light source

consists of two parts:umbraandpenumbra. Umbra is the part of the shadow from which

the light source is completely invisible. Penumbra is the part from which the light source is

partially visible and partially hidden by some scene objects. The rendering of soft shadows is

significantly more difficult than rendering of hard shadows mainly due to complex visibility

interactions in penumbra.

Ray tracing A straightforward extension of the ray tracing algorithm handles areal light

sources by shooting randomly distributed shadow rays towards the light source (Cook et al.,

1984).

Shadow volumes An adaptation of the SVBSP tree for areal light sources was proposed by

Chin and Feiner (1992). Chrysanthou and Slater (1997) used a shadow overlap cube to accel-

erate updates of soft shadows in dynamic polygonal scenes. For each polygon they maintain

an approximate discontinuity mesh to accurately capture shadow boundaries (discontinuity

meshing will be discussed in the next section).

Shadow textures Heckbert and Herf (1997) proposed an algorithm constructing a shadow

texture for each scene polygon. The texture is created by smoothed projections of the scene

from multiple sample points on the light source. Soler and Sillion (1998) calculate shadow

20



textures using convolution of the ’point-light shadow map’ and an image representing the areal

light source.

3.4.2 Form-factors

Form-factorsare used in radiosity (Goralet al., 1984) global illumination algorithms. A form-

factor expresses the mutual transfer of energy between two patches in the scene. Resolving

visibility between the patches is crucial for the form-factor computation.

Hemi-cube The hemi-cubealgorithm proposed by Cohen and Greenberg (1985) computes

a form-factor of a differential area with respect to all patches in the scene. The form-factor

between the two patches is estimated by solving visibility at the middle of the patch assuming

that the form-factor is almost constant across the patch. Thus the hemi-cube algorithm approx-

imates a visibility from a polygon problem by solving a visibility from a point problem. There

are two sources of errors in the hemi-cube algorithm: the finite resolution of the hemi-cube

and the fact that visibility is sampled only at one point on the patch.

Ray shooting Wallace et al. (1989) proposed a progressive radiosity algorithm that samples

visibility by ray shooting. Campbell and Fussell (1990) extend this method by using a shadow

volume BSP tree to resolve visibility.

Discontinuity meshing Discontinuity meshing was introduced by Heckbert (1992) and Lischin-

ski et al. (1992). A discontinuity mesh partitions scene polygons into patches so that each patch

’sees’ a topologically equivalent view of the light source. Boundaries of the mesh correspond

to loci of discontinuities in the illumination function. The algorithms of Heckbert (1992) and

Lischinski et al. (1992) construct a subset of the discontinuity mesh by casting planes corre-

sponding to the vertex-edgevisibility events. More elaborated methods capable of creating a

complete discontinuity mesh were introduced by Drettakis and Fiume (1994) and Stewart and

Ghali (1994). Discontinuity meshing can be used for computing accurate soft shadows or to

analytically calculate form-factors with respect to an areal light source.

21



3.5 Visibility from a region

Visibility from a region problems arise in the context of visibility preprocessing. According to

our taxonomy the complexity of the from-polygon and from-region visibility in 3D is identical.

In fact most visibility from a region algorithms solve the problem by computing a series of

from-polygon visibility queries.

3.5.1 Visibility culling

An offline visibility culling algorithm calculates a PVS of objects that are potentially visible

from any point inside a given viewing region.

General scenes Durand et al. (2000) proposed extended projections and an occlusion sweep

to calculate conservative from-region visibility in general scenes. Schaufler et al. (2000) used

blocker extensions to compute conservative visibility in scenes represented as volumetric data.

Bittner (2002b) proposed an algorithm using Plücker coordinates and BSP trees to calculate

exact from-region visibility. A similar method was developed by Nirenstein et al. (2002).

Indoor scenes Visibility algorithms for indoor scenes exploit the cell/portal subdivision

mentioned in Section3.2.4. Visibility from a cell is computed by checking sequences of por-

tals for possible sight-lines. Airey (1990) used ray shooting to estimate visibility between cells.

Teller et al. (1991) and Teller (1992b) use a stabbing line computation to check for feasible por-

tal sequences. Yagel and Ray (1995) present a visibility algorithm for cave-like structures, that

uses a regular spatial subdivision.

Outdoor scenes Outdoor urban scenes are typically considered as of 21
2
D nature and visi-

bility is computed using visibility from a line segment algorithms discussed in Section3.3.1.

Stewart (1997) proposed a conservative hierarchical visibility algorithm that precomputes oc-

cluded regions for cells of a digital elevation map.

22



3.5.2 Sound propagation

Beam tracing Funkhouser et al. (1998) proposed to use beam-tracing for acoustic modeling

in indoor environments. For each cell (region) of the model they construct a beam tree that

captures reverberation paths with respect to the cell. The construction of the beam tree is

based on the cell/portal visibility algorithms (Airey et al., 1990; Teller & Séquin, 1991).

3.6 Global visibility

The global visibility algorithms typically subdivide lines or rays into equivalence classes ac-

cording to their visibility classification. A practical application of most of the proposed global

visibility algorithms is still an open problem. Prospectively these techniques provide an el-

egant method for the acceleration of lower-dimensional visibility problems: for example ray

shooting can be reduced to a point location in the ray space subdivision.

Aspect graph Theaspect graph(Plantingaet al., 1990) partitions the view space into cells

that group view points from which the projection of the scene is qualitatively equivalent. The

aspect graph is a graph describing the view of the scene (aspect) for each cell of the partitioning.

The major drawback of this approach is that for polygonal scenes withn polygons there can

beΘ(n9) cells in the partitioning for an unrestricted view space.

Visibility complex Pocchiola and Vegter (1993) introduced thevisibility complexthat de-

scribes global visibility in 2D scenes. Rivière (1997) discussed the visibility complex for

dynamic polygonal scenes and applied it for maintaining a view around a moving point. The

visibility complex was generalized to three dimensions by Durand et al. (1996). No implemen-

tation of the 3D visibility complex is known.

Visibility skeleton Durand et al. (1997) introduced thevisibility skeleton. The visibility

skeleton is a graph describing the skeleton of the 3D visibility complex. The visibility skeleton

was implemented and verified experimentally. The results indicate that its worst case complex-

ity O(n4 log n) is much better in practice. Recently Duguet and Drettakis (2002) improved the

23



robustness of the method by using robust epsilon-visibility predicates.

Discrete methods Discrete methods describing visibility in a 4D grid-like data structure

were proposed by Chrysanthou et al. (1998) and Blais and Poulin (1998). These techniques

are closely related to thelumigraph(Gortleret al., 1996) andlight field (Levoy & Hanrahan,

1996) used for image-based rendering. Hinkenjann and Müller (1996) developed a discrete

hierarchical visibility algorithm for 2D scenes. Gotsman et al. (1999) proposed an approximate

visibility algorithm that uses a 5D subdivision of ray space and maintains a PVS for each cell

of the subdivision. A common problem of discrete global visibility data structures is their

memory consumption required to achieve a reasonable accuracy.

4 Visibility algorithm design

In this section we summarize important steps in the design of a visibility algorithm and discuss

common concepts and data structures. Nowadays the research in the area of visibility is largely

driven by the visibility culling methods. This follows from the fact that we are confronted with

a large amount of available data that cannot be visualized even on the latest graphics hard-

ware (Möller & Haines, 1999). Therefore our discussion of the visibility algorithm design is

balanced towards efficient concepts introduced recently to solve the visibility culling problem.

4.1 Preparing the data

We discuss three issues dealing with the type of data processed by the visibility algorithm:

scene restrictions, identifying occluders and occludees, and spatial data structures for the scene

description.

4.1.1 Scene restrictions

Visibility algorithms can be classified according to the restrictions they pose on the scene de-

scription. The type of the scene primitives influences the difficulty of solving the given prob-

lem: it is simpler to implement an algorithm computing a visibility map for scenes consisting

24



of triangles than for scenes with NURBS surfaces.

The majority of analytic visibility algorithms deals with static polygonal scenes without

transparency. The polygons are often subdivided into triangles for easier manipulation and

representation. Some visibility algorithms are designed for volumetric data (Schaufleret al.,

2000; Yagel & Ray, 1995), or point clouds (Pfisteret al., 2000). Analytic handling of paramet-

ric, implicit or procedural objects is complicated and so these objects are typically converted

to a boundary representation.

Many discrete algorithms can handle complicated objects by sampling their surface (e.g.

the z-buffer, ray casting). In particular the ray shooting algorithm (Appel, 1968) solving vis-

ibility along a single line can directly handle CSG models, parametric and implicit surfaces,

subdivision surfaces, etc.

4.1.2 Occluders and occludees

A number of visibility algorithms restructure the scene description to distinguish betweenoc-

cludersandoccludees(Zhanget al., 1997; Hudsonet al., 1997; Coorg & Teller, 1997; Bittner

et al., 1998; Wonkaet al., 2000). Occluders are objects that cause changes in visibility (occlu-

sion). The occluders are used to describe visibility, whereas the occludees are used to check

visibility with respect to the description provided by the occluders. The distinction between

occluders and occludees is used mostly by visibility culling algorithms to improve the time

performance of the algorithm and sometimes even its accuracy. Typically, the number of oc-

cluders and occludees is significantly smaller than the total number of objects in the scene.

Both the occluders and the occludees can be represented by ‘virtual’ objects constructed

from the scene primitives: the occluders as simplified inscribed objects, occludees as sim-

plified circumscribed objects such as bounding boxes. We can classify visibility algorithms

according to the type of occluders they deal with. Some algorithms use arbitrary objects as

occluders (Greeneet al., 1993; Zhanget al., 1997), other algorithms deal only with convex

polygons (Hudsonet al., 1997; Coorg & Teller, 1997; Bittner et al., 1998), or volumetric

cells (Yagel & Ray, 1995; Schaufleret al., 2000). Additionally some algorithms require ex-

plicit knowledge of occluder connectivity (Coorg & Teller, 1997; Wonka & Schmalstieg, 1999;

25



Schaufleret al., 2000). An important class of occluders are vertical prisms that can be used for

computing visibility in 21
2
D scenes (Wonka & Schmalstieg, 1999; Koltun et al., 2001; Bittner

et al., 2001) (see Figure9).

Figure 9: Occluders in an urban scene. In urban scenes the occluders can be considered vertical
prisms erected above the ground.

As occludees the algorithms typically use bounding volumes organized in a hierarchical

data structure (Woo & Amanatides, 1990; Coorg & Teller, 1997; Wonkaet al., 2000; Koltun

et al., 2001; Bittneret al., 2001).

4.1.3 Volumetric scene representation

The scene is typically represented by a collection of objects. For purposes of visibility compu-

tations it can be advantageous to transform the object centered representation to a volumetric

representation (Yagel & Ray, 1995; Saona-V́azquezet al., 1999; Schaufleret al., 2000). For

example the scene can be represented by an octree where full voxels correspond to opaque

parts of the scene. This representation provides a regular description of the scene that avoids

complicated configurations or overly detailed input. Furthermore, the representation is inde-

pendent of the total scene complexity.

26



4.2 The core: solution space data structures

The solution space is the domain in which the algorithm determines the desired result. For

most visibility algorithms the solution space data structure represents the invisible (occluded)

volume or its boundaries. In the case that the dimension of the solution space matches the

dimension of the problem-relevant line set, the visibility problem can often be solved with

high accuracy by a single sweep through the scene (Bittner, 2002b).

Visibility algorithms can be classified according to the structure of the solution space as

discrete or continuous. For example the z-buffer (Catmull, 1975) is a common example of

a discrete algorithm whereas the Weiler-Atherton algorithm (Weiler & Atherton, 1977) is an

example of a continuous one.

We can further distinguish the algorithms according to the semantics of the solution space

(a similar classification was given by Durand (1999)):

• primal space (object space)

• dual space (image space, line space, ray space)

A primal space algorithm solves the problem by studying the visibility between objects

without a transformation to a different solution space. A dual space algorithm solves visibility

using a transformation of the problem to line space or ray space. Image space algorithms can

also be seen as an important subclass of line space methods for computing visibility from a

point problems in 3D. The image space methods solve visibility in a plane that represents the

problem-relevant line setL3
p: each ray originating at the given point corresponds to a point in

the image plane.

Note that in our classification even an image space algorithm can be continuous and an

object space algorithm can be discrete. This classification differs from the understanding of

image space and object space algorithms that considers all image space algorithms discrete

and all object space algorithms continuous (Sutherlandet al., 1974).

27



4.3 Accuracy

According to the accuracy of the result visibility algorithms can be classified into the following

three categories (Cohen-Oret al., 2002):

• exact,

• conservative,

• approximate.

An exact algorithm provides an exact analytic result for the given problem (in practice how-

ever this result is commonly influenced by the finite precision of the floating point arithmetics).

A conservative algorithm overestimates visibility, i.e. it never misses any visible object, sur-

face or point. An approximate algorithm provides only an approximation of the result, i.e. it

can both overestimate and underestimate visibility.

The classification according to the accuracy can be illustrated easily on computing a PVS:

an exact algorithm computes an exact PVS. A conservative algorithm computes a superset of

the exact PVS. An approximate algorithm computes an approximation to the exact PVS that is

neither its subset nor its superset considering all possible inputs.

A more precise measure of the accuracy can be expressed as a distance from an exact result

in the solution space. For example, in the case of PVS algorithms we could evaluate relative

overestimation and relative underestimation of the PVS with respect to the exact PVS. In the

case of discontinuity meshing we can classify algorithms according to the classes of visibility

events they deal with (Stewart & Ghali, 1994; Durand, 1999). In the next section we discuss

an intuitive classification of the ability of a visibility algorithm to capture occlusion.

4.3.1 Occluder fusion

Theoccluder fusionis the ability of a visibility algorithm to account for the combined effect

of multiple occluders. We can distinguish three types of fusion of umbra for visibility from

a point algorithms. In the case of visibility from a region there are additional four types that

express fusion of penumbra (see Figure10).

28



viewpoint

a) no fusion c) complete fusion

e) connected occluder fusion

view
cell

d) no fusion f) overlapping umbra fusion g) complete fusion

b) connected occluder fusion

object, classified visible

object, classified invisible

viewpoint

view cell

calculated occlusion

Figure 10: Occluders are shown as black lines and occludees as circles. An occludee that is
marked white is classified visible due to the lack of occluder fusion.

4.4 Achieving performance

This section discusses four issues related to the running time and the memory consumption:

scalability, acceleration data structures, and the use of graphics hardware.

4.4.1 Scalability

Scalability expresses the ability of the visibility algorithm to cope with larger inputs. The

scalability of an algorithm can be studied with respect to the size of the scene (e.g. number

of scene objects). Another measure might consider the dependence of the algorithm on the

number of the visible objects. Scalability can also be studied according to the given domain

restrictions, e.g. volume of the view cell.

A well designed visibility algorithm should be scalable with respect to the number of struc-

tural changes of visibility. Furthermore, its performance should be given by the complexity of

the visible part of the scene. These two important measures of scalability of an algorithm are

discussed in the next two sections.

Use of coherence Scenes in computer graphics typically consist of objects whose properties

vary smoothly. A view of such a scene contains regions of smooth changes (changes in color,

depth, texture,etc.) at the surface of one object and discontinuities between objects. The degree

29



to which the scene or its projection exhibit local similarities is calledcoherence(Foleyet al.,

1990). Coherence can be exploited by reusing calculations made for one part of the scene

for nearby parts. Algorithms exploiting coherence are typically more efficient than algorithms

computing the result from the scratch.

Sutherland et al. (1974) identified several different types of coherence in the context of

visible surface algorithms. We simplify the classification proposed by Sutherland to reflect

general visibility algorithms and distinguish between the following three types ofvisibility

coherence:

• Spatial coherence. Visibility of points in space tends to be coherent in the sense that the

visible part of the scene consists of compact sets (regions) of visible and invisible points.

• Image-space, line-space, or ray-space coherence. Sets of similar rays tend to have the

same visibility classification, i.e. the rays intersect the same object.

• Temporal coherence. Visibility at two successive moments is likely to be similar despite

small changes in the scene or a region/point of interest.

The degree to which an algorithm exploits various types of coherence is one of the major

design paradigms in research of new visibility algorithms. The importance of exploiting co-

herence is emphasized by the large amount of data that need to be processed by the current

rendering algorithms.

Output sensitivity An algorithm is said to beoutput sensitiveif its running time is sensitive

to the size of output (Gotsmanet al., 1999). In the computer graphics community the term

output sensitive algorithm is used in a broader meaning than in computational geometry (Berg

et al., 1997). The attention is paid to a practical usage of the algorithm, i.e. to an efficient

implementation in terms of the practical average case performance. The algorithms are usually

evaluated experimentally using several data sets and measuring the running time and the size

of output of the algorithm.

30



4.4.2 Visibility preprocessing

Visibility computations at runtime can be accelerated by visibility preprocessing. The time for

preprocessing is often amortized over many executions of runtime visibility queries (Möller &

Haines, 1999). A typical application where visibility preprocessing is used are walkthroughs of

complex geometric models (Airey et al., 1990). In this case visibility is preprocessed by finding

a PVS for all view cells in the scene. At run-time only the PVS corresponding to the location

of the view point is considered for rendering. The drawbacks of visibility preprocessing are the

memory consumption of the precomputed visibility information and a complicated handling

of dynamic changes.

4.4.3 Acceleration data structures

Acceleration data structures are used to achieve the performance goals of a visibility algo-

rithm (Möller & Haines, 1999; Havran, 2000). These data structures allow efficient point

location, proximity queries, or scene traversal required by many visibility algorithms. The

common acceleration data structures include spatial subdivisions and bounding volume hierar-

chies that group scene objects according to the spatial proximity. Another class of acceleration

data structures consists of data structures that group rays according to their proximity in dual

space (line space or ray space).

4.4.4 Use of graphics hardware

The hardware implementation of the z-buffer algorithm is available even on a low-end graph-

ics hardware. The hardware z-buffer can be used to accelerate solutions to other visibility

problems. A visibility algorithm can be accelerated by the graphics hardware if it can be de-

composed into a series of z-buffer steps. Recall that the z-buffer algorithm solves the visibility

from a point problem by providing a discrete approximation of the visible surfaces. The recent

features of the graphics hardware, such as the pixel and vertex shaders allow easier application

of the graphics hardware for solving specific visibility tasks (Purcellet al., 2002).

31



4.5 Visibility algorithm template

We provide a general outline of an output sensitive visibility algorithm for calculating visibility

from a point or a region. In a preprocessing step occluders and occludees are constructed and

the scene is organized in a spatial data structure (e.g. kD-tree). To calculate visibility for a

view point or a region we need a data structure describing the occlusion with respect to the

point or the region. The algorithm proceeds as follows:

• The kD-tree is traversed top-down and front to back.

• For each kD-tree node test the node against the occlusion data structure.

• If the node is invisible cull its subtree and proceed with the next node.

• If the node is visible and it is not a leaf, descend into its subtree.

• If the node is visible and it is leaf:

(1) Insert the occluders in the node to the occlusion data structure.

(2) Mark all occludees associated with the node as visible.

Many efficient visibility culling algorithms follow this outline (Greeneet al., 1993; Bittner

et al., 1998; Wonka & Schmalstieg, 1999; Downset al., 2001; Bittner et al., 2001; Wonka

et al., 2000). Graphics hardware can be used to accelerate the updates of the occlusion data

structure. On the other hand the occlusion test becomes more complicated because of hardware

restrictions (Wonka & Schmalstieg, 1999; Durandet al., 2000; Zhanget al., 1997).

4.6 Summary

In this section we discussed common concepts of visibility algorithm design and mentioned

several criteria used for the classification of visibility algorithms. Although the discussion was

balanced towards visibility culling methods we believe that it provides a useful overview even

for other visibility problems.

32



To sum up the algorithms discussed in the paper we provide two overview tables. Table2

reviews algorithms for visibility from a point, Table3 reviews algorithms for visibility from a

line segment, a polygon, a region, and global visibility. The algorithms are indexed according

to the problem domain, the actual visibility problem, and the structure of the domain.

We characterize each algorithm using three features: solution space structure, solution

space semantics, and accuracy. These features were selected as they provide a meaningful

classification for the broad class of algorithms discussed in the paper. The solution space se-

mantics is classified as follows: If the algorithm solves visibility in an image plane we classify

it as image space. Note, that this plane does not need to correspond to the viewing plane (e.g.

shadow map). Similarly, if the algorithm solves visibility using line space or ray space analo-

gies, we classify it as line space or ray space, respectively. If the algorithm solves visibility

using object space entities (e.g. shadow volume boundaries), we classify it as object space.

The accuracy is expressed with respect to the problem domain structure. This means that if the

algorithm solves a problem with a discrete domain it can still provide an exact result although

it evaluates visibility only for the discrete samples.

5 Conclusion

Visibility problems and algorithms penetrate a large part of computer graphics research. We

proposed a taxonomy that aims to classify visibility problems independently from their target

application. The classification should help to understand the nature of the given problem and

it should assist in finding relationships between visibility problems and algorithms in different

application areas.

We aimed to provide a representative sample of visibility algorithms for visible surface

determination, visibility culling, shadow computation, image-based and point-based rendering,

global illumination, and global visibility computations.

We discussed common concepts of visibility algorithm design that should help to assist an

algorithm designer to transfer existing algorithms for solving visibility problems. Finally, we

summarized visibility algorithms discussed in the paper according to their domain, solution

33



space, and accuracy.

Computer graphics offers a number of efficient visibility algorithms for all stated visibility

problems in 2D as well as visibility along a line and visibility from a point in 3D. In particular it

provides a well researched background for discrete techniques. The solution of higher dimen-

sional visibility is significantly more difficult. The discrete techniques require a large number

of samples to achieve satisfying accuracy, whereas the continuous techniques are prone to ro-

bustness problems and are difficult to implement. The existing solutions must be tuned to a

specific application. Therefore the problems of visibility from a line segment, a polygon, a

region, and global visibility problems in 3D are the main focus of active computer graphics

research in visibility.

Acknowledgments

This research was supported by the Czech Ministry of Education under Project LN00B096 and

the Austrian Science Foundation (FWF) contract no. p-13876-INF.

34



problem solution space
domain description domain algorithm structure semantics accuracy notes

structure

VFP

visible
surface

determination

D

Catmull(1975) D I E HW
Newellet al. (1972) C/D O/I E
Fuchset al. (1980) C/D O/I E
Gordon & Chen(1991) C/D O/I E
Warnock(1969) D I E
Appel (1968) D O E

C
Naylor (1992) C O/I E
Weiler & Atherton(1977) C I E

visibility
culling

D

Greeneet al. (1993) D I C HW
Zhanget al. (1997) D I C/A HW
Aila (2000) D I C/A
Heyet al. (2001) D I C HW
Klosowski & Silva.(2001) D I C HW
Cohen-Or & Shaked(1995) D O E terrains
Lee & Shin(1997) D O E terrains

C

Luebke & Georges(1995) C I C indoor
Coorg & Teller(1997) C O C
Hudsonet al. (1997) C O C
Bittneret al. (1998) C O C
Wonka & Schmalstieg(1999) D O C HW
Downset al. (2001) C I C 21

2
D

Lloyd & Egbert(2002) C I C terrains
visibility

maps
C

Stewart & Karkanis(1998) D I A HW
Bittner (2002a) C O/I E

hard
shadows

D

Whitted(1979) D O E
Haines & Greenberg(1986) D I C
Woo & Amanatides(1990) D O C
Williams (1978) D I A
Segalet al. (1992) D I A HW
Stamminger & Drettakis(2002) D I A HW
Crow(1977) C/D O E
Heidmann(1991) C/D O E HW

C
Chin & Feiner(1989) C O E
Chrysanthou & Slater(1995) C O E dynamic

ray-set
tracing

C
Heckbert & Hanrahan(1984) C I E
Amanatides(1984) C O A
Szirmay-Kalos & Purgathofer(1998) D I A HW

point-based
rendering

D

McMillan (1997) D I E
Pfisteret al. (2000) D I A
Rusinkiewicz & Levoy(2000) D I A HW
Grossman & Dally(1998) D I A HW
Wandet al. (2001) D I A HW

Problem domain structure: D - discrete, C - continuous.

Solution space structure: D - discrete, C - continuous.

Solution space semantics: O - object space, I - image space.

Accuracy: E - exact, C - conservative, A - approximate.

Table 2: Summary of visibility from a point algorithms.

35



problem solution space
domain description domain algorithm structure semantics accuracy notes

structure

VLS

soft shadows D Heidrichet al. (2000) D I A HW
visibility
culling
in 21

2
D

C
Wonkaet al. (2000) D O C HW
Koltun et al. (2001) D O/L C
Bittneret al. (2001) C L/O C

VFPo

soft shadows
D Cooket al. (1984) D O A

C

Chin & Feiner(1992) C O A
Chrysanthou & Slater(1997) C O A dynamic
Heckbert & Herf(1997) D I/O A HW
Soler & Sillion (1998) D I/O A HW

form-factors C
Cohen & Greenberg(1985) D I A HW
Wallaceet al. (1989) D O A
Campbell, III & Fussell(1990) C O A

discontinuity
meshing

C

Heckbert(1992) C O A
Lischinskiet al. (1992) C O A
Drettakis & Fiume(1994) C O E
Stewart & Ghali(1994) C O E

VFR
visibility
culling

C

Durandet al. (2000) D I/O C HW
Schaufleret al. (2000) D O C
Bittner (2002b) C L E
Nirensteinet al. (2002) C L E
Airey et al. (1990) D O A indoor
Teller & Séquin(1991) C L E indoor 2D
Teller (1992b) C L E indoor
Yagel & Ray(1995) D O C caves
Stewart(1997) C O C terrain

GV

aspect graph C Plantingaet al. (1990) C O E

visibility
complex

C

Pocchiola & Vegter(1993) C L E 2D
Rivière(1997) C L E 2D
Durandet al. (1996) C L E
Durandet al. (1997) C O E
Duguet & Drettakis(2002) C O E/A

discrete
structures

C

Hinkenjann & Müller (1996) D L A 2D
Blais & Poulin(1998) D L A
Chrysanthouet al. (1998) D R A
Gotsmanet al. (1999) D R A

Problem domain structure: D - discrete, C - continuous.
Solution space structure: D - discrete, C - continuous.
Solution space semantics: O - object space, L - line space, R - ray space.
Accuracy: E - exact, C - conservative, A - approximate.

Table 3: Summary of algorithms for visibility from a line segment, visibility from a polygon,
visibility from a region, and global visibility.

36



References

Aila, T. (2000).SurRender Umbra: A Visibility Determination Framework for Dynamic Environments.

Master’s thesis, Helsinki University of Technology.

Airey, J.M., Rohlf, J.H. & Brooks, Jr., F.P. (1990). Towards image realism with interactive update rates

in complex virtual building environments. In1990 Symposium on Interactive 3D Graphics, 41–50,

ACM SIGGRAPH.

Amanatides, J. (1984). Ray tracing with cones. InComputer Graphics (SIGGRAPH ’84 Proceedings),

vol. 18, 129–135.

Appel, A. (1968). Some techniques for shading machine renderings of solids. InAFIPS 1968 Spring

Joint Computer Conf., vol. 32, 37–45.

Arvo, J. & Kirk, D. (1989).A survey of ray tracing acceleration techniques, 201–262. Academic Press.

Arvo, J. & Kirk, D. (1990). Particle transport and image synthesis. In F. Baskett, ed.,Computer Graphics

(Proceedings of SIGGRAPH’90), 63–66.

Berg, M., Kreveld, M., Overmars, M. & Schwarzkopf, O. (1997).Computational Geometry: Algorithms

and Applications. Springer-Verlag, Berlin, Heidelberg, New York.

Bittner, J. (2002a). Efficient construction of visibility maps using approximate occlusion sweep. InPro-

ceedings of Spring Conference on Computer Graphics (SCCG’02), 163–171, Budmerice, Slovakia.

Bittner, J. (2002b).Hierarchical Techniques for Visibility Computations. Ph.D. thesis, Czech Technical

University in Prague.

Bittner, J., Havran, V. & Slav́ık, P. (1998). Hierarchical visibility culling with occlusion trees. InPro-

ceedings of Computer Graphics International ’98 (CGI’98), 207–219, IEEE.

Bittner, J., Wonka, P. & Wimmer, M. (2001). Visibility preprocessing for urban scenes using line space

subdivision. InProceedings of Pacific Graphics (PG’01), 276–284, IEEE Computer Society, Tokyo,

Japan.

Blais, M. & Poulin, P. (1998). Sampling visibility in three-space. InProc. of the 1998 Western Computer

Graphics Symposium, 45–52.

37



Campbell, III, A.T. & Fussell, D.S. (1990). Adaptive mesh generation for global diffuse illumination.

In Computer Graphics (SIGGRAPH ’90 Proceedings), vol. 24, 155–164.

Carpenter, L. (1984). The A-buffer, an antialiased hidden surface method. In H. Christiansen, ed.,Com-

puter Graphics (SIGGRAPH ’84 Proceedings), vol. 18, 103–108.

Catmull, E.E. (1975). Computer display of curved surfaces. InProceedings of the IEEE Conference on

Computer Graphics, Pattern Recognition, and Data Structure, 11–17.

Chin, N. & Feiner, S. (1989). Near real-time shadow generation using BSP trees. InComputer Graphics

(Proceedings of SIGGRAPH ’89), 99–106.

Chin, N. & Feiner, S. (1992). Fast object-precision shadow generation for areal light sources using BSP

trees. In D. Zeltzer, ed.,Computer Graphics (1992 Symposium on Interactive 3D Graphics), vol. 25,

21–30.

Chrysanthou, Y. & Slater, M. (1995). Shadow volume BSP trees for computation of shadows in dynamic

scenes. In P. Hanrahan & J. Winget, eds.,1995 Symposium on Interactive 3D Graphics, 45–50, ACM

SIGGRAPH, iSBN 0-89791-736-7.

Chrysanthou, Y. & Slater, M. (1997). Incremental updates to scenes illuminated by area light sources.

In Proceedings of Eurographics Workshop on Rendering, 103–114, Springer Verlag.

Chrysanthou, Y., Cohen-Or, D. & Lischinski, D. (1998). Fast approximate quantitative visibility for

complex scenes. InProceedings of Computer Graphics International ’98 (CGI’98), 23–31, IEEE,

NY, Hannover, Germany.

Cohen, M.F. & Greenberg, D.P. (1985). The hemi-cube: A radiosity solution for complex environments.

Computer Graphics (SIGGRAPH ’85 Proceedings), 19, 31–40.

Cohen-Or, D. & Shaked, A. (1995). Visibility and dead-zones in digital terrain maps.Computer Graph-

ics Forum, 14, C/171–C/180.

Cohen-Or, D., Chrysanthou, Y., Silva, C. & Durand, F. (2002). A survey of visibility for walkthrough

applications.To appear in IEEE Transactions on Visualization and Computer Graphics..

38



Cook, R.L., Porter, T. & Carpenter, L. (1984). Distributed ray tracing. InComputer Graphics (SIG-

GRAPH ’84 Proceedings), 137–45.

Coorg, S. & Teller, S. (1997). Real-time occlusion culling for models with large occluders. InProceed-

ings of the Symposium on Interactive 3D Graphics, 83–90, ACM Press, New York.

Crow, F.C. (1977). Shadow algorithms for computer graphics.Computer Graphics (SIGGRAPH ’77

Proceedings), 11.

Downs, L., Möller, T. & Séquin, C.H. (2001). Occlusion horizons for driving through urban scenes. In

Symposium on Interactive 3D Graphics, 121–124, ACM SIGGRAPH.

Drettakis, G. & Fiume, E. (1994). A Fast Shadow Algorithm for Area Light Sources Using Backprojec-

tion. In Computer Graphics (Proceedings of SIGGRAPH ’94), 223–230.

Duguet, F. & Drettakis, G. (2002). Robust epsilon visibility.To appear in Computer Graphics (SIG-

GRAPH’02 Proceedings).

Durand, F. (1999).3D Visibility: Analytical Study and Applications. Ph.D. thesis, Universite Joseph

Fourier, Grenoble, France.

Durand, F., Drettakis, G. & Puech, C. (1996). The 3D visibility complex: A new approach to the

problems of accurate visibility. InProceedings of Eurographics Rendering Workshop ’96, 245–256,

Springer.

Durand, F., Drettakis, G. & Puech, C. (1997). The visibility skeleton: A powerful and efficient multi-

purpose global visibility tool. InComputer Graphics (Proceedings of SIGGRAPH ’97), 89–100.

Durand, F., Drettakis, G., Thollot, J. & Puech, C. (2000). Conservative visibility preprocessing using

extended projections. InComputer Graphics (Proceedings of SIGGRAPH 2000), 239–248.

Floriani, L.D. & Magillo, P. (1995). Horizon computation on a hierarchical terrain model.The Visual

Computer: An International Journal of Computer Graphics, 11, 134–149.

Foley, J.D., van Dam, A., Feiner, S.K. & Hughes, J.F. (1990).Computer Graphics: Principles and

Practice. Addison-Wesley Publishing Co., Reading, MA, 2nd edn.

39



Fuchs, H., Kedem, Z.M. & Naylor, B.F. (1980). On visible surface generation by a priori tree structures.

In Computer Graphics (SIGGRAPH ’80 Proceedings), vol. 14, 124–133.

Funkhouser, T., Carlbom, I., Elko, G., Pingali, G., Sondhi, M. & West, J. (1998). A beam tracing ap-

proach to acoustic modeling for interactive virtual environments. InComputer Graphics (Proceedings

of SIGGRAPH ’98), 21–32.

Goral, C.M., Torrance, K.K., Greenberg, D.P. & Battaile, B. (1984). Modelling the interaction of light

between diffuse surfaces. InComputer Graphics (SIGGRAPH ’84 Proceedings), vol. 18, 213–222.

Gordon, D. & Chen, S. (1991). Front-to-back display of BSP trees.IEEE Computer Graphics and

Applications, 11, 79–85.

Gortler, S.J., Grzeszczuk, R., Szeliski, R. & Cohen, M.F. (1996). The lumigraph. InComputer Graphics

(SIGGRAPH ’96 Proceedings), Annual Conference Series, 43–54, Addison Wesley.

Gotsman, C., Sudarsky, O. & Fayman, J.A. (1999). Optimized occlusion culling using five-dimensional

subdivision.Computers and Graphics, 23, 645–654.

Grant, C.W. (1992).Visibility Algorithms in Image Synthesis. Ph.D. thesis, U. of California, Davis.

Grasset, J., Terraz, O., Hasenfratz, J.M. & Plemenos, D. (1999). Accurate scene display by using visi-

bility maps. InSpring Conference on Computer Graphics and its Applications.

Greene, N., Kass, M. & Miller, G. (1993). Hierarchical Z-buffer visibility. InComputer Graphics (Pro-

ceedings of SIGGRAPH ’93), 231–238.

Grossman, J.P. & Dally, W.J. (1998). Point sample rendering. InRendering Techniques ’98 (Proceedings

of Eurographics Rendering Workshop), 181–192, Springer-Verlag Wien New York.

Gu, X., Gortier, S.J. & Cohen, M.F. (1997). Polyhedral geometry and the two-plane parameterization.

In J. Dorsey & P. Slusallek, eds.,Eurographics Rendering Workshop 1997, 1–12, Eurographics,

Springer Wein, New York City, NY, iSBN 3-211-83001-4.

Haines, E.A. & Greenberg, D.P. (1986). The light buffer: A ray tracer shadow testing accelerator.IEEE

Computer Graphics and Applications, 6, 6–16.

40



Havran, V. (2000).Heuristic Ray Shooting Algorithms. Ph.d. thesis, Department of Computer Science

and Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague.

Heckbert, P.S. (1992). Discontinuity meshing for radiosity. InThird Eurographics Workshop on Ren-

dering, 203–216, Bristol, UK.

Heckbert, P.S. & Hanrahan, P. (1984). Beam tracing polygonal objects.Computer Graphics (SIG-

GRAPH’84 Proceedings), 18, 119–127.

Heckbert, P.S. & Herf, M. (1997). Simulating soft shadows with graphics hardware. Tech. rep., CS

Dept., Carnegie Mellon U., cMU-CS-97-104, http://www.cs.cmu.edu/ ph.

Heidmann, T. (1991). Real shadows, real time.Iris Universe, 18, 28–31, silicon Graphics, Inc.

Heidrich, W., Brabec, S. & Seidel, H. (2000). Soft shadow maps for linear lights. InProceedings of

EUROGRAPHICS Workshop on Rendering, 269–280.

Hey, H., Tobler, R.F. & Purgathofer, W. (2001). Real-Time occlusion culling with a lazy occlusion grid.

In Proceedings of EUROGRAPHICS Workshop on Rendering, 217–222.

Hinkenjann, A. & Müller, H. (1996). Hierarchical blocker trees for global visibility calculation. Re-

search Report 621/1996, University of Dortmund.

Hudson, T., Manocha, D., J.Cohen, M.Lin, K.Hoff & H.Zhang (1997). Accelerated occlusion culling

using shadow frusta. InProceedings of the Thirteenth ACM Symposium on Computational Geometry,

June 1997, Nice, France.

Kajiya, J.T. (1986). The rendering equation. InComputer Graphics (SIGGRAPH ’86 Proceedings),

143–150.

Klosowski, J.T. & Silva., C.T. (2001). Efficient conservative visibility culling using the prioritized-

layered projection algorithm.IEEE Transactions on Visualization and Computer Graphics, 7, 365–

379.

Koltun, V., Chrysanthou, Y. & Cohen-Or, D. (2001). Hardware-accelerated from-region visibility using

a dual ray space. InProceedings of the 12th EUROGRAPHICS Workshop on Rendering.

41



Lee, C.H. & Shin, Y.G. (1997). A terrain rendering method using vertical ray coherence.The Journal

of Visualization and Computer Animation, 8, 97–114.

Levoy, M. & Hanrahan, P. (1996). Light field rendering. In H. Rushmeier, ed.,SIGGRAPH 96 Confer-

ence Proceedings, Annual Conference Series, 31–42, ACM SIGGRAPH, Addison Wesley, held in

New Orleans, Louisiana, 04-09 August 1996.

Lischinski, D., Tampieri, F. & Greenberg, D.P. (1992). Discontinuity meshing for accurate radiosity.

IEEE Computer Graphics and Applications, 12, 25–39.

Lloyd, B. & Egbert, P. (2002). Horizon occlusion culling for real-time rendering of hierarchical terrains.

In Proceedings of the conference on Visualization ’02, 403–410, IEEE Press.

Luebke, D. & Georges, C. (1995). Portals and mirrors: Simple, fast evaluation of potentially visible

sets. In P. Hanrahan & J. Winget, eds.,1995 Symposium on Interactive 3D Graphics, 105–106, ACM

SIGGRAPH.

McMillan, L. (1997). An image-based approach to three-dimensional computer graphics. Ph.D. Thesis

TR97-013, University of North Carolina, Chapel Hill.

Möller, T. & Haines, E. (1999).Real-Time Rendering. A. K. Peters Limited.

Naylor, B.F. (1992). Partitioning tree image representation and generation from 3D geometric models.

In Proceedings of Graphics Interface ’92, 201–212.

Newell, M.E., Newell, R.G. & Sancha, T.L. (1972). A solution to the hidden surface problem. InPro-

ceedings of ACM National Conference.

Nirenstein, S., Blake, E. & Gain, J. (2002). Exact From-Region visibility culling. InProceedings of

EUROGRAPHICS Workshop on Rendering, 199–210.

Pellegrini, M. (1997). Ray shooting and lines in space. In J.E. Goodman & J. O’Rourke, eds.,Handbook

of Discrete and Computational Geometry, chap. 32, 599–614, CRC Press LLC, Boca Raton, FL.

Pfister, H., Zwicker, M., van Baar, J. & Gross, M. (2000). Surfels: Surface elements as rendering

primitives. InComputer Graphics (Proceedings of SIGGRAPH 2001), 335–342, ACM SIGGRAPH

/ Addison Wesley Longman.

42



Plantinga, H., Dyer, C.R. & Seales, W.B. (1990). Real-time hidden-line elimination for a rotating poly-

hedral scene using the aspect representation. InProceedings of Graphics Interface ’90, 9–16.

Pocchiola, M. & Vegter, G. (1993). The visibility complex. InProc. 9th Annu. ACM Sympos. Comput.

Geom., 328–337.

Purcell, T.J., Buck, I., Mark, W.R. & Hanrahan, P. (2002). Ray tracing on programmable graphics

hardware. InComputer Graphics (SIGGRAPH ’02 Proceedings), 703–712.

Rivière, S. (1997). Dynamic visibility in polygonal scenes with the visibility complex. InProc. 13th

Annu. ACM Sympos. Comput. Geom., 421–423.

Rusinkiewicz, S. & Levoy, M. (2000). QSplat: A multiresolution point rendering system for large

meshes. InComputer Graphics (Proceedings of SIGGRAPH 2000), 343–352, ACM SIGGRAPH /

Addison Wesley Longman.

Saona-V́azquez, C., Navazo, I. & Brunet, P. (1999). The visibility octree: a data structure for3D navi-

gation.Computers and Graphics, 23, 635–643.

Schaufler, G., Dorsey, J., Decoret, X. & Sillion, F.X. (2000). Conservative volumetric visibility with

occluder fusion. InComputer Graphics (Proceedings of SIGGRAPH 2000), 229–238.

Segal, M., Korobkin, C., van Widenfelt, R., Foran, J. & Haeberli, P. (1992). Fast shadows and lighting

effects using texture mapping.Computer Graphics (SIGGRAPH ’92 Proceedings), 26, 249–252.

Soler, C. & Sillion, F. (1998). Fast calculation of soft shadow textures using convolution. InComputer

Graphics (Proceedings of SIGGRAPH ’98), ACM SIGGRAPH.

Stamminger, M. & Drettakis, G. (2002). Perspective shadow maps. InSIGGRAPH 2002 Conference

Proceedings, 557–562, ACM Press/ ACM SIGGRAPH.

Stewart, A.J. (1997). Hierarchical visibility in terrains. InProceedings of Eurographics Rendering

Workshop ’97, 217–228.

Stewart, A.J. & Ghali, S. (1994). Fast computation of shadow boundaries using spatial coherence and

backprojections. InComputer Graphics (Proceedings of SIGGRAPH ’94), 231–238.

43



Stewart, A.J. & Karkanis, T. (1998). Computing the approximate visibility map, with applications to

form factors and discontinuity meshing. InProceedings of the Ninth Eurographics Workshop on

Rendering, 57–68.

Stolfi, J. (1991).Oriented Projective Geometry: A Framework for Geometric Computations. Academic

Press.

Sutherland, I.E., Sproull, R.F. & Schumacker, R.A. (1974). A characterization of ten hidden-surface

algorithms.ACM Computing Surveys, 6, 1–55.

Szirmay-Kalos, L. & Purgathofer, W. (1998). Global ray-bundle tracing with hardware acceleration. In

Ninth Eurographics Workshop on Rendering, Vienna, Austria.

Teller, S.J. (1992a). Computing the antipenumbra of an area light source. InComputer Graphics (Pro-

ceedings of SIGGRAPH ’92), 139–148.

Teller, S.J. (1992b).Visibility Computations in Densely Occluded Polyhedral Environments. Ph.D. the-

sis, CS Division, UC Berkeley, tech. Report UCB/CSD-92-708.

Teller, S.J. & Śequin, C.H. (1991). Visibility preprocessing for interactive walkthroughs. InProceedings

of SIGGRAPH ’91, 61–69.

Wald, I., Slusallek, P., Benthin, C. & Wagner, M. (2001). Interactive rendering with coherent ray tracing.

In A. Chalmers & T.M. Rhyne, eds.,EG 2001 Proceedings, vol. 20(3) ofComputer Graphics Forum,

153–164, Blackwell Publishing.

Wallace, J.R., Elmquist, K.A. & Haines, E.A. (1989). A ray tracing algorithm for progressive radiosity.

In SIGGRAPH ’89 Proceedings, 315–324.

Wand, M., Fischer, M., Peter, I., auf der Heide, F.M. & Straßer, W. (2001). The randomized z-buffer

algorithm: Interactive rendering of highly complex scenes. InComputer Graphics (Proceedings of

SIGGRAPH 2001), 361–370, ACM SIGGRAPH.

Warnock, J. (1969). A hidden-surface algorithm for computer generated half-tone pictures. Tech. Rep.

TR 4–15, NTIS AD-733 671, University of Utah, Computer Science Department.

44



Weiler, K. & Atherton, P. (1977). Hidden surface removal using polygon area sorting. InComputer

Graphics (SIGGRAPH ’77 Proceedings), 214–222.

Whitted, T. (1979). An improved illumination model for shaded display. InComputer Graphics (Special

SIGGRAPH ’79 Issue), vol. 13, 1–14.

Williams, L. (1978). Casting curved shadows on curved surfaces. InComputer Graphics (SIGGRAPH

’78 Proceedings), 270–274.

Wonka, P. & Schmalstieg, D. (1999). Occluder shadows for fast walkthroughs of urban environments.

In Computer Graphics Forum (Proceedings of EUROGRAPHICS ’99), 51–60, Blackwell Publishers.

Wonka, P., Wimmer, M. & Schmalstieg, D. (2000). Visibility preprocessing with occluder fusion for

urban walkthroughs. InProceedings of EUROGRAPHICS Workshop on Rendering, 71–82.

Woo, A. & Amanatides, J. (1990). Voxel occlusion testing: A shadow determination accelerator for ray

tracing. InProceedings of Graphics Interface ’90, 213–220.

Woo, A., Poulin, P. & Fournier, A. (1990). A survey of shadow algorithms.IEEE Computer Graphics

and Applications, 10, 13–32.

Yagel, R. & Ray, W. (1995). Visibility computation for efficient walkthrough of complex environments.

Presence: Teleoperators and Virtual Environments, 5.

Zhang, H., Manocha, D., Hudson, T. & Hoff III, K.E. (1997). Visibility culling using hierarchical

occlusion maps. InComputer Graphics (Proceedings of SIGGRAPH ’97), 77–88.

45


	Introduction
	Taxonomy of visibility problems
	Problem domain
	The dimension of visibility problems

	Visibility along a line
	Visibility from a point
	Visibility from a line segment
	Visibility from a polygon
	Visibility from a region
	Global visibility
	Summary

	Visibility problems and algorithms
	Visibility along a line
	Visibility from a point
	Visible surface determination
	Visibility maps
	Back face culling and view frustum culling
	Visibility culling
	Hard shadows
	Global illumination
	Image-based and Point-based rendering

	Visibility from a line segment
	Visibility culling
	Soft shadows

	Visibility from a polygon
	Soft shadows
	Form-factors

	Visibility from a region
	Visibility culling
	Sound propagation

	Global visibility

	Visibility algorithm design
	Preparing the data
	Scene restrictions
	Occluders and occludees
	Volumetric scene representation

	The core: solution space data structures
	Accuracy
	Occluder fusion

	Achieving performance
	Scalability
	Visibility preprocessing
	Acceleration data structures
	Use of graphics hardware

	Visibility algorithm template
	Summary

	Conclusion

