Visibility in Computer Graphics

Jifi Bittner'® and Peter Wonka

fCenter for Applied Cybernetics
Czech Technical University in Prague
SInsitute of Computer Graphics and Algorithms
Vienna University of Technology
tGraphics, Visualization, and Usability Center

Georgia Institute of Technology

Abstract

Visibility computation is crucial for computer graphics from its very beginning. The
first visibility algorithms in computer graphics aimed to determine visible surfaces in a
synthesized image of a 3D scene. Nowadays there are many different visibility algorithms
for various visibility problems. We propose a new taxonomy of visibility problems that is
based on a classification according to the problem domain. We provide a broad overview
of visibility problems and algorithms in computer graphics grouped by the proposed tax-
onomy. The paper surveys visible surface algorithms, visibility culling algorithms, visibil-
ity algorithms for shadow computation, global illumination, point-based and image-based
rendering, and global visibility computations. Finally, we discuss common concepts of

visibility algorithm design and several criteria for the classification of visibility algorithms.

1 Introduction

Visibility is studied in computer graphics, architecture, computational geometry, computer vi-
sion, robotics, telecommunications, and other research areas. In this paper we discuss visibility
problems and algorithms from the point of view of computer graphics.

Computer graphics aims to synthesize images of virtual scenes by simulating the propa-
gation of light. Visibility is a crucial phenomenon that is an integral part of the interaction
of light with the environment. The first visibility algorithms aimed to determine which lines
or surfaces are visible in a synthesized image of a 3D scene. These problems are known as
visible lineandvisible surfacedetermination or akidden lineandhidden surfaceemoval.
The classical visible line and visible surface algorithms were developed in the early days of
computer graphics in the late 60’s and the beginning of the &herlandet al, 1974.
These techniques were mostly designed for vector displays. Later, with increasing availability
of raster devices the traditional techniques were replaced by the z-buffer algo@ittmul
1975. Nowadays, we can identify two widely spread visibility algorithms: the z-buffer for
visible surface determination and ray shooting for computing visibility along a single ray. The
z-buffer and its modifications dominate the area of real-time rendering whereas ray shooting
is commonly used in the scope of global illumination methods. Besides these two elementary
methods there is a plethora of visibility algorithms for various specific visibility problems.

Several surveys of visibility methods have been published. The classical survey of Suther-
land, Sproull, and Schumacker974) covers ten traditional visible surface algorithms. This
survey was updated by Grarit992 who provides a classification of visibility algorithms that
includes newer rendering paradigms such as distributed ray tracing. A survey of D19&8d (
provides a comprehensive multidisciplinary overview of visibility techniques in various re-
search areas. A recent survey of Cohen-Or et28l09 summarizes visibility algorithms for
walkthrough applications.

In this paper we aim to provide a new taxonomy of visibility problems encountered in
computer graphics based on the problem domain. The taxonomy should help to understand

the nature of a particular visibility problem and provides a tool for grouping problems of sim-

ilar complexity independently from their target application. We provide a broad overview of
visibility problems and algorithms in computer graphics grouped by the proposed taxonomy.
The paper surveys visible surface algorithms, visibility culling algorithms for, visibility algo-
rithms for shadow computation, global illumination, point-based and image-based rendering,
and global visibility computations.

In contrast to the previous surveys, we focus on the common ideas and concepts rather than
algorithmic details. We aim to assist a potential algorithm designer in transferring the concepts
developed in the computer graphics community to solve visibility problems in other research

areas.

2 Taxonomy of visibility problems

Visibility is a phenomenon that can be defined by means of mutually unoccluded points: two
points are mutually visible if the line segment connecting them is unoccluded. From this
definition we can make two observations: (1) lines carry visibility, (2) two points can be visible
regardless of their distance.

The first observation says that the domain of a visibility problem is formed by the set of
lines through which the scene entities might be visible. We call this seirti#em-relevant
line set The second observation says that visibility of scene entities is independent of their

spatial proximity.

2.1 Problem domain

The problem domain is given by the problem-relevant line set, i.e. by the set of lines involved

in the solution of the problem. Computer graphics deals with the following domains:
1. visibility along a line
2. visibility from a point

3. visibility from a line segment

4. visibility from a polygon
5. visibility from a region
6. global visibility

The domain description is independent from the dimension of the scene, i.e. the problem of
visibility from a point can be stated for 2D P, and 3D scenes. The actual domains however
differ depending on the scene dimension. For example, as we shall see later, visibility from a
polygon is equivalent to visibility from a region in 2D, but not in 3D.

The problem domains can further be categorized as discrete or continuous. A discrete
domain consists of a finite set of lines (rays), which is a common situation when the problem

aims at computing visibility with respect to a raster image.

2.1.1 The dimension of visibility problems

We assume that a line jrimal spacecan be mapped to a point lme space(Stolfi, 1997,
Pellegrini 1997 Teller, 1992 Durand 1999. In 3D there are four degrees of freedom in
the description of a line and thus the corresponding line space is four-dimensional. Fixing
certain line parameters (e.g. direction), the problem-relevant line set, dedptddrms a
k-dimensional subset o®*, where0 < k < 4. The superscript3) expresses the dimension

of primal space, the subscript)(corresponds to one of the problem domain classder
visibility along a line,p for visibility from a point, s for visibility from a line segmenty for
visibility from a polygon,r for visibility from a region, and; for global visibility.

In 2D there are two degrees of freedom in the description of a line and the correspond-
ing line space is two-dimensional. Therefore, the problem-relevant lin€sérms ak-
dimensional subset d®?, where0 < k < 2. An illustration of the concept of the problem-
relevant line set is depicted in Figute

For the purpose of this discussion we define the dimension of the visibility problem as the

dimension of the corresponding problem-relevant line set.

visibility visibility visibility
aong aline from a point from a segment

Figure 1: Problem-relevant line sets in 2L} corresponds to a single point that is a mapping

of the given Iine.ﬁg is formed by points lying on a line. This line is a dual mapping of the
pointp. £2 is formed by a 2D subset induced by the intersection of dual mappings of endpoints
of the given segment.

2.2 \Visibility along a line

The simplest visibility problems deal with visibility along a single line. The problem-relevant
line setis zero-dimensional, i.e. itis fully specified by the given line. The visibility along a line
problems can be solved by computing intersections of the given line with the scene objects.
The most common visibility along a line problemriy shooting(Arvo & Kirk , 1989.
Given a ray, ray shooting determines the first intersection of the ray with a scene object. A
similar problem to ray shooting j{@int-to-pointvisibility. Point-to-point visibility determines
whether the line segment between two points is unoccluded, i.e. the line segment has no
intersection with an opaque object in the scene. Another visibility along a line problem is
determining thanaximal free line segments a given line. See Figuizfor an illustration of

typical visibility along a line problems.

A oA A

Figure 2: Visibility along a line. (left) Ray shooting. (center) Point-to-point visibility. (right)
Maximal free line segments between two points.

2.3 Visibility from a point

Lines intersecting a point in 3D can be described by two parameters. For example the lines
can be expressed by an intersection with a unit sphere centered at the given point. The most

common parametrization describes a line by a point of intersection with a (viewing) plane (see

viewing plane /

Figure3).

view point

Figure 3: Visibility from a point. Lines intersecting a point can be described by a point of
intersection with a plane.

In 3D the problem-relevant line se:té is a 2D subset of the 4D line space. In 2]3 isa
1D subset of the 2D line space. Thus to solve visibility from a point in 3D (2D) accurately we
need to account for visibility along each line of the 2D (1D) set.

The typical visibility from a point problem igisible surface determinatiofi-oley et al.,,
1990. Due to its importance for image synthesis visible surface determination covers the
majority of existing visibility algorithms in computer graphics. The problerpaht-to-region

visibility aims to classify a region as visible, invisible, or partially visible with respect to the

given point Teller & Sequin 1991). Another visibility from a point problem is the construction
of thevisibility map(Stewart & Karkanis1998, i.e. a graph describing the given view of the

scene including its topology.

2.4 \Visibility from a line segment

Lines intersecting a line segment in 3D can be described by three parameters. One parameter
fixes the intersection of the line with the segment the other two express the direction of the
line. Thus we can imag€; as a 1D set of’; that are associated with all points on the given
segment (see Figur®. The problem-relevant line s€f is three-dimensional and? is two-
dimensional. An interesting observation is that in 2D, visibility from a line segment already

reaches the dimension of the whole line space.

segment plane occluded line space
lines
1 e
object Ly
UT 05
0 Los Lo [N \
'-o.s\D
VK Ly Yl g L
1
X X

0 05 1

Figure 4: Visibility from a line segment. Lines intersecting a line segment f6¢m The
figure shows a possible parametrization that stacks up 2D planes. Each plane corresponds to
mappings of lines intersecting a point on the given line segment.

Thesegment-to-region visibilitfVonkaet al., 2000 is used for visibility preprocessing in
21D scenes. Visibility from a line segment also arises in the computation of soft shadows due

to a linear light sourceHeidrichet al,, 2000.

2.5 Visibility from a polygon

In 3D, lines intersecting a polygon can be described by four param&aerst(al., 1997 Pel-
legrini, 1997). For example: two parameters fix a point inside the polygon, the other two

parameters describe a direction of the line. We can imagjnas a 2D set oﬁf; associated

7

with all points inside the polygon (see Figute L3 is a four-dimensional subset of the 4D

line space. In 2D, lines intersecting a polygon consists of sets that intersect the boundary line
segments of the polygon and thgg§ is two-dimensional. Visibility from a polygon prob-

lems include computing a form-factor between two polygdbasrélet al., 1984, soft shadow

algorithms Chin & Feiner 1992, and discontinuity meshindgieckbert 1992).

Figure 5: Visibility from a polygon. The figure depicts boundary rays of line sets through
which the three polygons are visible.

2.6 Visibility from a region

Lines intersecting a volumetric region in 3D can be described by four parameters. Similarly
to the case of lines intersecting a polygon two parameters can fix a point on the boundary of
the region, the other two fix the direction of the line. Thiisis four-dimensional and the
corresponding visibility problems belong to the same complexity class as the from-polygon
visibility problems. In 2D, visibility from a 2D region is equivalent to visibility from a polygon:
L2 is a 2D subset of 2D line space.

A typical visibility from a region problem is the problem @gion-to-regiorvisibility (Teller
& Séquin 1991 that aims to determine if the two given regions in the scene are mutually vis-
ible, invisible or partially visible (see Figu®. The region-to-region visibility problem arises
in the context of computing potentially visible se{PVS), i.e. the set of objects potentially

visible from any point inside the given region.

primal space line space

-

Figure 6: Region-to-region visibility. Two regions and two occluders in a 2D scene. In line
space the region-to-region visibility can be solved by subtracting the set of lines intersecting
objectsA and B from lines intersecting both regions.

2.7 Global visibility

Global visibility problems pose no restrictions on the problem-relevant line set as they consider
all lines in the scene. Thufs; is four-dimensional anaig is two-dimensional. Although these
dimensions are equivalent to those of visibility from a region problems there is no given set of
reference points from which visibility is studied and thus there is no given priority ordering of
objects along each particular line. Therefore an additional parameter must be used to describe
visibility (e.g. visible objects) along each ray. Additionally, the global visibility problems
typically deal with a much larger sets of rays.

Global visibility problems include view space partitioninglgntingaet al., 1990, com-
putation of the visibility complexFocchiola & Vegter1993, or visibility skeleton Durand
et al, 1997).

2.8 Summary

The summary of the taxonomy of visibility problems is given in TableThe classification
according to the dimension of the problem-relevant line set provides means for understanding
how difficult it is to compute and maintain visibility for a particular class of problems. For
example a data structure representing the visible or occluded parts of the scene for the visibility
from a point problem needs to partition 2@ into visible and occluded sets of lines. This
observation conforms with the traditional visible surface algorithms that partition an image

into empty/nonempty regions and associate each nonempty region (pixel) with a visible object.

In this case the image represem,%as each point of the image corresponds to a line through
that point. To analytically describe visibility from a region a subdivision of 4Dshould be
performed. This is much more difficult than the 2D subdivision. Moreover the description of
visibility from a region involves non-linear subdivisions of both primal space and line space
even for polygonal scene3dller, 1992 Durand 1999. The classification also shows that
solutions to many visibility problems in 2D do not extend easily to 3D since they involve line

sets of different dimension®(rand 1999.

problem dimension of common
domain LY problems
N . ray shooting
visibility along a line 0 point-to-point visibility
- . view around a point
2D visibility from a point 1 point-to-region visibility
visibility from a line segment
visibility from a polygon 5 region-to-region visibility
visibility from a region PVS
global visibility
N . ray shooting
visibility along a fine 0 point-to-point visibility
visible (hidden) surfaces
visibility from a point 2 point-to-region visibility
visibility map
hard shadows
3D segment-to-region visibility
visibility from a line segment 3 soft shadows
PVS in 25D scenes
region-to-region visibility
visibility from a polygon PVS
visibility from a region 4 aspect graph
global visibility soft shadows
discontinuity meshing

Table 1: Classification of visibility problems according to the dimension of the problem-
relevant line set.

3 Visibility problems and algorithms

This section provides an overview of representative visibility problems and algorithms. We

do not aim to give detailed descriptions of the algorithms. Instead we provide a catalog of

10

visibility algorithms structured according to the taxonomy. Within each class of the taxonomy
the algorithms are grouped according to the actual visibility problem or important algorithmic

features.

3.1 \Visibility along a line

Ray shooting Ray shooting is the most common visibility along a line problem. Given a ray,
ray shooting determines the first intersection of the ray with a scene object. Ray shooting was
first used by Appel 1968 to solve the visible surface problem for each pixel of the image.
Ray shooting is the core of tlray tracing algorithm (Vhitted 1979 that follows light paths

from the view point backwards to the scene. Many recent methods use ray shooting driven by
stochastic sampling for more accurate simulation of light propagaiiajy@, 1986 Arvo &

Kirk, 1990. A naive ray shooting algorithm tests all objects for intersection with a given ray

to find the closest visible object along the raydfn) time (wheren is the number of objects).

For complex scenes even the linear time complexity is very restrictive since a huge amount of
rays is needed to synthesize an image. An overview of acceleration techniques for ray shooting

was given by Arvo {989. A recent survey was presented by Havradq0.

Point-to-point visibility Point-to-point visibility is used within the ray tracing algorithivkit-

ted 1979 to test whether a given point is in shadow with respect to a point light source.
This query is typically resolved by casting shadow rays from the given point towards the light
source. This process can be accelerated by preprocessing visibility from the light $teairees(

& Greenberg1986 Woo & Amanatides1990 (see Sectiol.2.5for more details).

3.2 Visibility from a point

Visibility from a point problems cover the majority of visibility algorithms developed in the
computer graphics community. We subdivide this section according to five subclasses: visible
surface determination, visibility culling, hard shadows, global illumination, and image-based

and point-based rendering.

11

3.2.1 Visible surface determination

Visible surface determination aims to determine visible surfaces in the synthesized image,

which is the most common visibility problem in computer graphics.

Z-buffer The z-buffer, introduced by Catmull®79, is one of the simplest visible surface
algorithms. Its simplicity allows an efficient hardware implementation and therefore the z-
buffer is nowadays commonly available even on low cost graphics hardware. The z-buffer is
a discrete algorithm that associates a depth value with each pixel of the image. The z-buffer
performs discrete sampling of visibility and therefore the rendering algorithms based on the
z-buffer are prone to aliasin@arpenter1984.

The z-buffer algorithm is nobutput sensitivesince it needs to rasterize all scene objects
even if many objects are invisible. This is not restrictive for scenes where most of the scene ele-
ments are visible, such as a single albeit complex object. For large scenes with high depth com-
plexity the processing of invisible objects causes significaerdraw Overdraw expresses
how many polygons are rasterized at a pixel (only the closest polygon is actually visible). The
overdraw problem is addressed by visibility culling methods that will be discussed in Sec-

tion3.2.4

List priority algorithms List priority algorithms determine an ordering of scene objects so
that a correct image is produced if the objects are rendered in this order. Typically objects
are processed in back-to-front order: closer objects are painted over the farther ones in the
frame buffer. In some cases no suitable order exists due to cyclic overlaps and therefore some
object(s) have to be split. The list priority algorithms differ according to which objects get
split and when the splitting occurgdley et al, 1990. Thedepth sort algorithnby Newell

et al. 1972 renders polygons in the frame buffer in the order of decreasing distance from
the view point. This is performed by partial sorting of polygons according to their depths
and resolving possible depth overlaps. A simplified variant of this algorithm that ignores the
overlap checks is called thpainter’s algorithmdue to the similarity to the way a painter might

paint closer objects over distant ones. Tieary space partitioningBSP) tree introduced by

12

Fuchs, Kedem, and Nayloi 980 allows the efficient calculation of visibility ordering among
static polygons in a scene seen from an arbitrary view point. Improved output-sensitive variants
of the algorithm generate a front-to-back order of polygons and an image space data structure

for correct image update§prdon & Chen1991 Naylor, 1992.

Area subdivision algorithms Warnock (969 developed an area subdivision algorithm that
subdivides a given image area into four rectangles. In the case that visibility within the cur-
rent rectangle cannot be solved, the rectangle is recursively subdivided. The subdivision is
terminated when the area matches the pixel size. The algorithm of Weiler and AtHe3 % (
subdivides the image plane using the actual polygon boundaries. The algorithm does not rely

on a pixel resolution but it requires a robust polygon clipping algorithm.

Scan line algorithms The scan-line visibility algorithms extend the scan conversion of a
single polygon Foleyet al, 1990. They maintain an active edge table that indicates which
polygons span the current scan line. The scan line coherence is exploited using incremental

updates of the active edge table similarly to the scan conversion of a single polygon.

Ray casting Ray casting Appel, 1968 is a visible surface algorithm that solves visibility
by ray shooting. More specifically by shooting rays through each pixel in the image. The

advantage of ray casting is that it is inherently output sensitiadd et al.,, 2001).

3.2.2 Visibility maps

A visibility map is a graph describing a view of the scene including its topology. Stewart and
Karkanis (999 proposed an algorithm for the construction of approximate visibility maps
using dedicated graphics hardware. They use an item buffer and graph relaxation to determine
edges and vertices of visible scene polygons and their topology. Grassefl888.dealt with

some theoretical operations on visibility maps and their applications in computer graphics.

Bittner (20023 uses a BSP tree to calculate and represent the visibility map.

13

3.2.3 Back face culling and view frustum culling

Back face culling aims to avoid rendering of polygons that are not facing the view point. View
frustum culling eliminates polygons that do not intersect the viewing frustum. These two
methods are heavily exploited in real-time rendering applications. Both techniques provide
simple decisions, but they do not account for occlusion. SébeMand Haines1999 for a

detailed discussion.

3.2.4 \Visibility culling

Visibility culling algorithms aim to accelerate rendering of large scenes by quickly culling
invisible parts of the scene. The final hidden surface removal is typically carried out using the
z-buffer. To avoid image artifacts visibility culling algorithms are usualnservativei.e.,

they never classify a visible object as invisible. In real-time rendering applications the scene
usually consists of a large set of triangles. Due to efficiency reasons it is common to calculate

visibility for a group of triangles rather than for each triangle separately.

General scenes The z-buffer is a basic and robust tool for hidden surface removal, but it can

be very inefficient for scenes with a high depth-complexity. This problem is addressed by the
hierarchical z-bufferalgorithm developed by Greene et d903. The hierarchical z-buffer

uses a z-pyramid to represent image depths and an octree to organize the scene. The z-pyramid
is used to test visibility of octree bounding boxes. Zhang etl&l97) proposed an algorithm

that replaces the z-pyramid byhgerarchical occlusion ma@nd adepth estimation buffer

This approach was further studied by Ai20Q0.

Newer graphics hardware provides an occlusion test for bounding boxes (e.g. ATI, NVIDIA).
The problem of this occlusion test is that the result of such an occlusion query is not read-
ily available. A straightforward algorithm would therefore cause many unnecessary delays
(pipeline stalls) in the rendering. The focus of research has now shifted to finding ways of
ordering the scene traversal to interleave rendering and visibility queries in an efficient man-

ner Hey et al, 2001, Klosowski & Silva, 2001).

14

Scenes with large occluders Another class of algorithms selects several large occluders and
performs visibility culling in object space. Hudsoh907) uses shadow volumes of each se-
lected occluder independently to check visibility of a spatial hierarchy. Coorg and Tedi&n) (
track visibility from the view point by maintaining a set of planes corresponding to visibility
changes. Bittner et al1098 construct an occlusion tree that merges occlusion volumes of the

selected occluders.

Urban scenes Visibility algorithms for indoor scenes use a natural partitioning of architec-
tural scenes into cells and portals. Cells correspond to rooms and portals correspond to doors
and windows Airey et al, 1990. Luebke and George& 995 proposed a simple conservative
cell/portal visibility algorithm for indoor scenes.

Wonka and Schmalstie@999 used occluder shadows and the z-buffer for visibility culling
in Z%D scenes and Downs et a2(01J) use occlusion horizons maintained by a binary tree for

the same class of scenes.

Terrains Terrain visibility algorithms developed in the GIS and the computational geometry
communities are surveyed by De Floriani and Magill8%5. In computer graphics, Cohen-
Or et al. (1995 proposed an algorithm that reduces a visibility from a point problem;d 2

to a series of problems in%D. Lee and ShinX997) use vertical ray coherence to accelerate
rendering of a digital elevation map. Lloyd and Egb@®@2 use an adaption of occlusion

horizons Downset al,, 2001]) to calculate visibility for terrains.

3.2.5 Hard shadows

The presence of shadows in a computer generated image significantly increases its realism.
Shadows provide important visual cues about position and size of an object in the scene. A
shadow due to a point light source and an object is the volume from which the light source is
hidden by the object. We discuss several important algorithms for computing hard shadows.
A detailed discussion of shadow algorithms can be founiiadet al, 1990 and Moller &

Haines 1999.

15

Ray tracing Ray tracing Whitted 1979 does not explicitly reconstruct shadow volumes.
Instead it samples points on surfaces using a point-to-point visibility query (see S2@ion

to test if the points are in shadow. Tracing of shadow rays can be significantly accelerated by
using a light buffer introduced by Haines and Greenb&8$6. The light buffer is a 2D array

that associates with each entry a list of objects intersected by the corresponding rays. Woo and
Amanatides 1990 proposed to precompute shadowed regions with respect to the light source

and store this information within the spatial subdivision.

Shadow maps Shadow maps proposed by William9(78 provide a discrete representation

of shadows due to a single point light source. A shadow map is a 2D image of the scene as
seen from the light source. Each pixel of the image contains the depth of the closest object
to the light source. The algorithm constructs a shadow map by rendering the scene into a
z-buffer using the light source as the view point. Then the scene is rendered using a given
view and visible points are projected into the shadow map. The depth value of a point is
compared to the value stored in the shadow map. If the point is farther than the stored value it
is in shadow. This algorithm can be accelerated using graphics hard3egelét al., 1992).
Shadow maps can represent shadow due to objects defined by complex surfaces, i.e. any object
that can be rasterized into the shadow map is suitable. In contrast to ray tracing the shadow
map approach explicitly reconstructs the shadow volume and represents it in a discrete form.
Several techniques have been proposed to reduce the aliasing due to the discreGzatipn (

1992 Stamminger & Drettakis?2002).

Shadow volumes The shadow volume of a polygon with respect to a point is a semi infinite
frustum. The intersection of the frustum with the scene bounding volume can be explicitly
reconstructed and represented by a set of shadow polygons bounding the frustuml @Agw (
proposed that these polygons can be used to test if a point corresponding to the pixel of the
rendered image is in shadow by counting the number of shadow polygons in front of and
behind the point. Heidmanrl991) proposed an efficient real-time implementation of the

shadow volume algorithm. Thghadow volume BSESVBSP) tree proposed by Chin and

16

Feiner (L1989 provides an efficient representation of a union of shadow volumes of a set of
convex polygons. The SVBSP tree is used to explicitly compute lit and shadowed fragments
of scene polygons. An adaptation of the SVBSP method to dynamic scenes was studied by
Chrysanthou and Slatet$95. See Figurer for an illustration of the output of the SVBSP

algorithm.

2\

= ”“\:i\li\ght source \‘\. X

Figure 7: A mesh resulting from subdividing the scene using a SVBSP tree. The darker patches
are invisible from the light source.

3.2.6 Global illumination

Beam tracing Thebeam tracinglesigned by Heckbert and Hanrah&a@84) casts a pyramid
(beam) of rays rather than shooting a single ray at a time. The resulting algorithm makes use

of ray coherence and eliminates some aliasing connected with the classical ray tracing.

Cone tracing The cone tracingproposed by Amanatided4 984 traces a cone of rays at a

time instead of a polyhedral beam or a single ray. In contrast to the beam tracing the algorithm
does not determine precise boundaries of visibility changes. The cones are intersected with the
scene objects and at each intersected object a new cone (or cones) is cast to simulate reflection

and refraction.

Bundle tracing Most stochastic global illumination methods shoot rays independently and

thus they do not exploit visibility coherence among rays. An exception igaheéundle

17

tracingintroduced by Szirmay-Kalo4.099 that shoots a set of parallel rays through the scene
according to a randomly sampled direction. This approach allows to exploit ray coherence by

tracing many rays at the same time.

3.2.7 Image-based and Point-based rendering

Image-based and point-based rendering generate images from point-sampled representations
like images or point clouds. This is useful for highly complex models, which would otherwise
require a huge number of triangles. A pointis infinitely small by definition and so the visibility

of the point samples is determined using a local reconstruction of the sampled surface that is

inherent in the particular rendering algorithm.

Image warping McMillan (1997 proposed an algorithm for warping images from one view
point to another. The algorithm resolves visibility by a correct occlusion compatible traversal

of the input image without using additional data structures like a z-buffer.

Splatting Most point-based rendering algorithms project points on the screensat{ng
Splatting is used to avoid gaps in the image and to resolve visibility of projected points. Pfister
et al. 000 use software visibility splatting. Rusinkiewicz et @000 use a hardware ac-
celerated z-buffer and Grossman and Dall948 use the hierarchical z-buffeisfeeneet al.,,

1993 to resolve visibility.

Random sampling Therandomized z-buffealgorithm proposed by Wand et a2Q01) culls
triangles under the assumption that many small triangles project to a single pixel. A large
triangle mesh is sampled and visibility of the samples is resolved using the z-buffer. The
algorithm selects a sufficient number of sample points so that each pixel receives a sample

from a visible triangle with high probability.

18

3.3 Visibility from a line segment

We discuss visibility from a line segment in the scope of visibility culling and computing soft

shadows.

3.3.1 \Visibility culling

Several algorithms calculate visibility ir%D urban environments for a region of space using
a series of visibility from a line segment queries. The PVS for a given view cell is a union of
PVSs computed for all ‘top-edges’ of the viewing regioionkaet al, 2000.

Wonka et al. 2000 use occluder shrinking and point sampling to calculate visibility with
the help of a hardware accelerated z-buffer. Koltun e&l0() transform the gD problem to
a series of 2D visibility problems. The 2D problems are solved using dual ray space and the
z-buffer algorithm. Bittner et al2001) use a line space subdivision maintained by a BSP tree

to calculate the PVS. Figugillustrates the concept of a PVS in 32 scene.

(@) (b) ©

Figure 8: APVSina 3D scene representing 8 Krof Vienna. (a) A selected view cell and
the corresponding PVS. The dark regions were culled by hierarchical visibility tests. (b) A
closeup of the view cell and its PVS. (c) A snapshot of an observer’s view from a view point
inside the view cell.

3.3.2 Soft shadows

Heidrich et al. 2000 proposed an extension of the shadow map approachniear light

sources (line segments). They use a discrete shadow map enrichedsiyildy channelto

19

render soft shadows at interactive speeds. The visibility channel stores the percentage of the

light source that is visible at the corresponding point.

3.4 Visibility from a polygon

Visibility from a polygon problems are commonly studied by realistic rendering algorithms
that aim to capture illumination due to areal light sources. We discuss the following problems:

computing soft shadows, evaluating form factors, and discontinuity meshing.

3.4.1 Soft shadows

Soft shadows appear in scenes with areal light sources. A shadow due to an areal light source
consists of two partsumbraand penumbra Umbra is the part of the shadow from which

the light source is completely invisible. Penumbra is the part from which the light source is
partially visible and partially hidden by some scene objects. The rendering of soft shadows is
significantly more difficult than rendering of hard shadows mainly due to complex visibility

interactions in penumbra.

Ray tracing A straightforward extension of the ray tracing algorithm handles areal light
sources by shooting randomly distributed shadow rays towards the light s@ook €t al,

1984).

Shadow volumes An adaptation of the SVBSP tree for areal light sources was proposed by
Chin and FeinerX992. Chrysanthou and Slatet497 used a shadow overlap cube to accel-
erate updates of soft shadows in dynamic polygonal scenes. For each polygon they maintain
an approximate discontinuity mesh to accurately capture shadow boundaries (discontinuity

meshing will be discussed in the next section).

Shadow textures Heckbert and Herf1997 proposed an algorithm constructing a shadow
texture for each scene polygon. The texture is created by smoothed projections of the scene

from multiple sample points on the light source. Soler and Sillib®9g calculate shadow

20

textures using convolution of the "point-light shadow map’ and an image representing the areal

light source.

3.4.2 Form-factors

Form-factorsare used in radiosityGoralet al,, 1984 global illumination algorithms. A form-
factor expresses the mutual transfer of energy between two patches in the scene. Resolving

visibility between the patches is crucial for the form-factor computation.

Hemi-cube The hemi-cubealgorithm proposed by Cohen and Greenbd@85 computes

a form-factor of a differential area with respect to all patches in the scene. The form-factor
between the two patches is estimated by solving visibility at the middle of the patch assuming
that the form-factor is almost constant across the patch. Thus the hemi-cube algorithm approx-
imates a visibility from a polygon problem by solving a visibility from a point problem. There
are two sources of errors in the hemi-cube algorithm: the finite resolution of the hemi-cube

and the fact that visibility is sampled only at one point on the patch.

Ray shooting Wallace et al. 1989 proposed a progressive radiosity algorithm that samples
visibility by ray shooting. Campbell and FusselBO0 extend this method by using a shadow

volume BSP tree to resolve visibility.

Discontinuity meshing Discontinuity meshing was introduced by Heckb&A%2 and Lischin-
skietal. 1992. A discontinuity mesh partitions scene polygons into patches so that each patch
'sees’ a topologically equivalent view of the light source. Boundaries of the mesh correspond
to loci of discontinuities in the illumination function. The algorithms of Heckb&&92 and
Lischinski et al. {992 construct a subset of the discontinuity mesh by casting planes corre-
sponding to the vertex-edgesibility events More elaborated methods capable of creating a
complete discontinuity mesh were introduced by Drettakis and Fid®9@4 and Stewart and
Ghali (1994. Discontinuity meshing can be used for computing accurate soft shadows or to

analytically calculate form-factors with respect to an areal light source.

21

3.5 Visibility from a region

Visibility from a region problems arise in the context of visibility preprocessing. According to
our taxonomy the complexity of the from-polygon and from-region visibility in 3D is identical.
In fact most visibility from a region algorithms solve the problem by computing a series of

from-polygon visibility queries.

3.5.1 Visibility culling

An offline visibility culling algorithm calculates a PVS of objects that are potentially visible

from any point inside a given viewing region.

General scenes Durand et al. 2000 proposed extended projections and an occlusion sweep

to calculate conservative from-region visibility in general scenes. Schaufler 20a0 used
blocker extensions to compute conservative visibility in scenes represented as volumetric data.
Bittner (20020 proposed an algorithm usingileker coordinates and BSP trees to calculate

exact from-region visibility. A similar method was developed by Nirenstein eRaD2.

Indoor scenes Visibility algorithms for indoor scenes exploit the cell/portal subdivision
mentioned in Sectio.2.4 Visibility from a cell is computed by checking sequences of por-
tals for possible sight-lines. Aireyt990 used ray shooting to estimate visibility between cells.
Teller etal. (991) and Teller {992h use a stabbing line computation to check for feasible por-
tal sequences. Yagel and Rap03H present a visibility algorithm for cave-like structures, that

uses a regular spatial subdivision.

Outdoor scenes Outdoor urban scenes are typically considered a%m‘ Rature and visi-
bility is computed using visibility from a line segment algorithms discussed in Se8itfh
Stewart (997 proposed a conservative hierarchical visibility algorithm that precomputes oc-

cluded regions for cells of a digital elevation map.

22

3.5.2 Sound propagation

Beam tracing Funkhouser et al1098 proposed to use beam-tracing for acoustic modeling
in indoor environments. For each cell (region) of the model they construct a beam tree that
captures reverberation paths with respect to the cell. The construction of the beam tree is

based on the cell/portal visibility algorithma&i¢ey et al., 199Q Teller & Séquin 1991).

3.6 Global visibility

The global visibility algorithms typically subdivide lines or rays into equivalence classes ac-
cording to their visibility classification. A practical application of most of the proposed global
visibility algorithms is still an open problem. Prospectively these techniques provide an el-
egant method for the acceleration of lower-dimensional visibility problems: for example ray

shooting can be reduced to a point location in the ray space subdivision.

Aspect graph Theaspect graph{Plantingaet al., 1990 partitions the view space into cells

that group view points from which the projection of the scene is qualitatively equivalent. The
aspect graph is a graph describing the view of the scene (aspect) for each cell of the partitioning.
The major drawback of this approach is that for polygonal scenesnitblygons there can

be©(n?) cells in the partitioning for an unrestricted view space.

Visibility complex Pocchiola and Vegterl@93 introduced thevisibility complexthat de-
scribes global visibility in 2D scenes. Rere (L1997 discussed the visibility complex for
dynamic polygonal scenes and applied it for maintaining a view around a moving point. The
visibility complex was generalized to three dimensions by Durand et294. No implemen-

tation of the 3D visibility complex is known.

Visibility skeleton Durand et al. 1997 introduced thevisibility skeleton The visibility
skeleton is a graph describing the skeleton of the 3D visibility complex. The visibility skeleton
was implemented and verified experimentally. The results indicate that its worst case complex-

ity O(n*logn) is much better in practice. Recently Duguet and Drett€9 improved the

23

robustness of the method by using robust epsilon-visibility predicates.

Discrete methods Discrete methods describing visibility in a 4D grid-like data structure
were proposed by Chrysanthou et d1998 and Blais and Poulinl©98. These techniques

are closely related to tHemigraph(Gortleret al,, 1996 andlight field (Levoy & Hanrahan

1996 used for image-based rendering. Hinkenjann aridlé (1996 developed a discrete
hierarchical visibility algorithm for 2D scenes. Gotsman etE99 proposed an approximate
visibility algorithm that uses a 5D subdivision of ray space and maintains a PVS for each cell
of the subdivision. A common problem of discrete global visibility data structures is their

memory consumption required to achieve a reasonable accuracy.

4 Visibility algorithm design

In this section we summarize important steps in the design of a visibility algorithm and discuss
common concepts and data structures. Nowadays the research in the area of visibility is largely
driven by the visibility culling methods. This follows from the fact that we are confronted with

a large amount of available data that cannot be visualized even on the latest graphics hard-
ware (Moller & Haines 1999. Therefore our discussion of the visibility algorithm design is

balanced towards efficient concepts introduced recently to solve the visibility culling problem.

4.1 Preparing the data

We discuss three issues dealing with the type of data processed by the visibility algorithm:
scene restrictions, identifying occluders and occludees, and spatial data structures for the scene

description.

4.1.1 Scene restrictions

Visibility algorithms can be classified according to the restrictions they pose on the scene de-
scription. The type of the scene primitives influences the difficulty of solving the given prob-

lem: it is simpler to implement an algorithm computing a visibility map for scenes consisting

24

of triangles than for scenes with NURBS surfaces.

The majority of analytic visibility algorithms deals with static polygonal scenes without
transparency. The polygons are often subdivided into triangles for easier manipulation and
representation. Some visibility algorithms are designed for volumetric ataa(fleret al,
200Q Yagel & Ray, 1999, or point clouds Pfisteret al,, 2000. Analytic handling of paramet-
ric, implicit or procedural objects is complicated and so these objects are typically converted
to a boundary representation.

Many discrete algorithms can handle complicated objects by sampling their surface (e.g.
the z-buffer, ray casting). In particular the ray shooting algoritdmpgel, 1968 solving vis-
ibility along a single line can directly handle CSG models, parametric and implicit surfaces,

subdivision surfaces, etc.

4.1.2 Occluders and occludees

A number of visibility algorithms restructure the scene description to distinguish betveeen
cludersandoccludeegZhanget al, 1997 Hudsonet al,, 1997 Coorg & Teller, 1997 Bittner
et al, 1998 Wonkaet al,, 2000. Occluders are objects that cause changes in visibility (occlu-
sion). The occluders are used to describe visibility, whereas the occludees are used to check
visibility with respect to the description provided by the occluders. The distinction between
occluders and occludees is used mostly by visibility culling algorithms to improve the time
performance of the algorithm and sometimes even its accuracy. Typically, the number of oc-
cluders and occludees is significantly smaller than the total number of objects in the scene.
Both the occluders and the occludees can be represented by ‘virtual’ objects constructed
from the scene primitives: the occluders as simplified inscribed objects, occludees as sim-
plified circumscribed objects such as bounding boxes. We can classify visibility algorithms
according to the type of occluders they deal with. Some algorithms use arbitrary objects as
occluders Greeneet al, 1993 Zhanget al, 1997, other algorithms deal only with convex
polygons Hudsonet al, 1997 Coorg & Teller 1997 Bittner et al, 1998, or volumetric
cells (Yagel & Ray, 1995 Schaufleret al, 2000. Additionally some algorithms require ex-
plicit knowledge of occluder connectivitCporg & Teller, 1997 Wonka & Schmalstiegl 999

25

Schaufleet al, 2000. An important class of occluders are vertical prisms that can be used for
computing visibility in %D scenes\(Vonka & Schmalstiegl 999 Koltun et al,, 2007, Bittner
et al,, 2007) (see Figure®).

Figure 9: Occluders in an urban scene. In urban scenes the occluders can be considered vertical
prisms erected above the ground.

As occludees the algorithms typically use bounding volumes organized in a hierarchical
data structureWoo & Amanatides199Q Coorg & Teller, 1997 Wonkaet al,, 200Q Koltun
et al, 2003, Bittneret al,, 2007).

4.1.3 Volumetric scene representation

The scene is typically represented by a collection of objects. For purposes of visibility compu-
tations it can be advantageous to transform the object centered representation to a volumetric
representationfagel & Ray, 1995 Saona-\Azquezet al, 1999 Schaufleret al,, 2000. For
example the scene can be represented by an octree where full voxels correspond to opaque
parts of the scene. This representation provides a regular description of the scene that avoids
complicated configurations or overly detailed input. Furthermore, the representation is inde-

pendent of the total scene complexity.

26

4.2 The core: solution space data structures

The solution space is the domain in which the algorithm determines the desired result. For
most visibility algorithms the solution space data structure represents the invisible (occluded)
volume or its boundaries. In the case that the dimension of the solution space matches the
dimension of the problem-relevant line set, the visibility problem can often be solved with
high accuracy by a single sweep through the sc8iténer, 20020.

Visibility algorithms can be classified according to the structure of the solution space as
discrete or continuous. For example the z-bufféatfnull, 1975 is a common example of
a discrete algorithm whereas the Weiler-Atherton algorithvieiler & Atherton 1977 is an
example of a continuous one.

We can further distinguish the algorithms according to the semantics of the solution space

(a similar classification was given by Durarib@9):
e primal space (object space)
e dual space (image space, line space, ray space)

A primal space algorithm solves the problem by studying the visibility between objects
without a transformation to a different solution space. A dual space algorithm solves visibility
using a transformation of the problem to line space or ray space. Image space algorithms can
also be seen as an important subclass of line space methods for computing visibility from a
point problems in 3D. The image space methods solve visibility in a plane that represents the
problem-relevant line seIfg: each ray originating at the given point corresponds to a point in
the image plane.

Note that in our classification even an image space algorithm can be continuous and an
object space algorithm can be discrete. This classification differs from the understanding of
image space and object space algorithms that considers all image space algorithms discrete

and all object space algorithms continuo8sitherlancet al,, 1974.

27

4.3 Accuracy

According to the accuracy of the result visibility algorithms can be classified into the following

three categoriesJohen-Oret al, 2002:
e exact,
e conservative,
e approximate.

An exact algorithm provides an exact analytic result for the given problem (in practice how-
ever this result is commonly influenced by the finite precision of the floating point arithmetics).

A conservative algorithm overestimates visibility, i.e. it never misses any visible object, sur-
face or point. An approximate algorithm provides only an approximation of the result, i.e. it
can both overestimate and underestimate visibility.

The classification according to the accuracy can be illustrated easily on computing a PVS:
an exact algorithm computes an exact PVS. A conservative algorithm computes a superset of
the exact PVS. An approximate algorithm computes an approximation to the exact PVS that is
neither its subset nor its superset considering all possible inputs.

A more precise measure of the accuracy can be expressed as a distance from an exact result
in the solution space. For example, in the case of PVS algorithms we could evaluate relative
overestimation and relative underestimation of the PVS with respect to the exact PVS. In the
case of discontinuity meshing we can classify algorithms according to the classes of visibility
events they deal withStewart & Ghalj 1994 Durand 1999. In the next section we discuss

an intuitive classification of the ability of a visibility algorithm to capture occlusion.

4.3.1 Occluder fusion

The occluder fusions the ability of a visibility algorithm to account for the combined effect
of multiple occluders. We can distinguish three types of fusion of umbra for visibility from
a point algorithms. In the case of visibility from a region there are additional four types that

express fusion of penumbra (see Figli

28

O object, classified visible
. object, classified invisible I Ya %74

@ viewpoint

| view cell .)
viewpoint

7 calculated occlusion a) no fusion b) connected occluder fusion ¢) complete fusion

d) no fusion e) connected occluder fusion f) overlapping umbra fusion g) complete fusion

Figure 10: Occluders are shown as black lines and occludees as circles. An occludee that is
marked white is classified visible due to the lack of occluder fusion.

4.4 Achieving performance

This section discusses four issues related to the running time and the memory consumption:

scalability, acceleration data structures, and the use of graphics hardware.

4.4.1 Scalability

Scalability expresses the ability of the visibility algorithm to cope with larger inputs. The
scalability of an algorithm can be studied with respect to the size of the scene (e.g. number
of scene objects). Another measure might consider the dependence of the algorithm on the
number of the visible objects. Scalability can also be studied according to the given domain
restrictions, e.g. volume of the view cell.

A well designed visibility algorithm should be scalable with respect to the number of struc-
tural changes of visibility. Furthermore, its performance should be given by the complexity of
the visible part of the scene. These two important measures of scalability of an algorithm are

discussed in the next two sections.

Use of coherence Scenes in computer graphics typically consist of objects whose properties
vary smoothly. A view of such a scene contains regions of smooth changes (changes in color,

depth, texture,etc.) at the surface of one object and discontinuities between objects. The degree

29

to which the scene or its projection exhibit local similarities is caleberencgFoleyet al,
1990. Coherence can be exploited by reusing calculations made for one part of the scene
for nearby parts. Algorithms exploiting coherence are typically more efficient than algorithms
computing the result from the scratch.

Sutherland et al.1974) identified several different types of coherence in the context of
visible surface algorithms. We simplify the classification proposed by Sutherland to reflect
general visibility algorithms and distinguish between the following three typessdsility

coherence

e Spatial coherenceVisibility of points in space tends to be coherent in the sense that the

visible part of the scene consists of compact sets (regions) of visible and invisible points.

e Image-space, line-space, or ray-space coherer8rts of similar rays tend to have the

same visibility classification, i.e. the rays intersect the same object.

e Temporal coherenceVisibility at two successive moments is likely to be similar despite

small changes in the scene or a region/point of interest.

The degree to which an algorithm exploits various types of coherence is one of the major
design paradigms in research of new visibility algorithms. The importance of exploiting co-
herence is emphasized by the large amount of data that need to be processed by the current

rendering algorithms.

Output sensitivity An algorithm is said to beutput sensitivé its running time is sensitive

to the size of outputGotsmanet al, 1999. In the computer graphics community the term
output sensitive algorithm is used in a broader meaning than in computational geda®ztry (

et al, 1997. The attention is paid to a practical usage of the algorithm, i.e. to an efficient
implementation in terms of the practical average case performance. The algorithms are usually
evaluated experimentally using several data sets and measuring the running time and the size

of output of the algorithm.

30

4.4.2 Visibility preprocessing

Visibility computations at runtime can be accelerated by visibility preprocessing. The time for
preprocessing is often amortized over many executions of runtime visibility quitidke(&
Haines1999. A typical application where visibility preprocessing is used are walkthroughs of
complex geometric modelérey et al,, 1990. In this case visibility is preprocessed by finding

a PVS for all view cells in the scene. At run-time only the PVS corresponding to the location
of the view point is considered for rendering. The drawbacks of visibility preprocessing are the
memory consumption of the precomputed visibility information and a complicated handling

of dynamic changes.

4.4.3 Acceleration data structures

Acceleration data structures are used to achieve the performance goals of a visibility algo-
rithm (Moller & Haines 1999 Havran 2000. These data structures allow efficient point
location, proximity queries, or scene traversal required by many visibility algorithms. The
common acceleration data structures include spatial subdivisions and bounding volume hierar-
chies that group scene objects according to the spatial proximity. Another class of acceleration
data structures consists of data structures that group rays according to their proximity in dual

space (line space or ray space).

4.4.4 Use of graphics hardware

The hardware implementation of the z-buffer algorithm is available even on a low-end graph-
ics hardware. The hardware z-buffer can be used to accelerate solutions to other visibility
problems. A visibility algorithm can be accelerated by the graphics hardware if it can be de-
composed into a series of z-buffer steps. Recall that the z-buffer algorithm solves the visibility
from a point problem by providing a discrete approximation of the visible surfaces. The recent
features of the graphics hardware, such as the pixel and vertex shaders allow easier application

of the graphics hardware for solving specific visibility tasRsicellet al., 2002).

31

4.5 Visibility algorithm template

We provide a general outline of an output sensitive visibility algorithm for calculating visibility
from a point or a region. In a preprocessing step occluders and occludees are constructed and
the scene is organized in a spatial data structure (e.g. kD-tree). To calculate visibility for a
view point or a region we need a data structure describing the occlusion with respect to the

point or the region. The algorithm proceeds as follows:

e The kD-tree is traversed top-down and front to back.

For each kD-tree node test the node against the occlusion data structure.

If the node is invisible cull its subtree and proceed with the next node.

If the node is visible and it is not a leaf, descend into its subtree.

If the node is visible and it is leaf:

(1) Insert the occluders in the node to the occlusion data structure.

(2) Mark all occludees associated with the node as visible.

Many efficient visibility culling algorithms follow this outlineGreeneet al,, 1993 Bittner

et al, 1998 Wonka & Schmalstieg1999 Downset al, 2001, Bittner et al., 2001, Wonka

et al, 2000. Graphics hardware can be used to accelerate the updates of the occlusion data
structure. On the other hand the occlusion test becomes more complicated because of hardware

restrictions Wonka & Schmalstiegl 999 Durandet al., 200Q Zhanget al., 1997).

4.6 Summary

In this section we discussed common concepts of visibility algorithm design and mentioned
several criteria used for the classification of visibility algorithms. Although the discussion was
balanced towards visibility culling methods we believe that it provides a useful overview even

for other visibility problems.

32

To sum up the algorithms discussed in the paper we provide two overview tables2Table
reviews algorithms for visibility from a point, Tablereviews algorithms for visibility from a
line segment, a polygon, a region, and global visibility. The algorithms are indexed according
to the problem domain, the actual visibility problem, and the structure of the domain.

We characterize each algorithm using three features: solution space structure, solution
space semantics, and accuracy. These features were selected as they provide a meaningful
classification for the broad class of algorithms discussed in the paper. The solution space se-
mantics is classified as follows: If the algorithm solves visibility in an image plane we classify
it as image space. Note, that this plane does not need to correspond to the viewing plane (e.g.
shadow map). Similarly, if the algorithm solves visibility using line space or ray space analo-
gies, we classify it as line space or ray space, respectively. If the algorithm solves visibility
using object space entities (e.g. shadow volume boundaries), we classify it as object space.
The accuracy is expressed with respect to the problem domain structure. This means that if the
algorithm solves a problem with a discrete domain it can still provide an exact result although

it evaluates visibility only for the discrete samples.

5 Conclusion

Visibility problems and algorithms penetrate a large part of computer graphics research. We
proposed a taxonomy that aims to classify visibility problems independently from their target
application. The classification should help to understand the nature of the given problem and
it should assist in finding relationships between visibility problems and algorithms in different
application areas.

We aimed to provide a representative sample of visibility algorithms for visible surface
determination, visibility culling, shadow computation, image-based and point-based rendering,
global illumination, and global visibility computations.

We discussed common concepts of visibility algorithm design that should help to assist an
algorithm designer to transfer existing algorithms for solving visibility problems. Finally, we

summarized visibility algorithms discussed in the paper according to their domain, solution

33

space, and accuracy.

Computer graphics offers a number of efficient visibility algorithms for all stated visibility
problems in 2D as well as visibility along a line and visibility from a point in 3D. In particular it
provides a well researched background for discrete techniques. The solution of higher dimen-
sional visibility is significantly more difficult. The discrete techniques require a large number
of samples to achieve satisfying accuracy, whereas the continuous techniques are prone to ro-
bustness problems and are difficult to implement. The existing solutions must be tuned to a
specific application. Therefore the problems of visibility from a line segment, a polygon, a
region, and global visibility problems in 3D are the main focus of active computer graphics

research in visibility.

Acknowledgments

This research was supported by the Czech Ministry of Education under Project LNOOB096 and
the Austrian Science Foundation (FWF) contract no. p-13876-INF.

34

problem

solution space

domain description domain algorithm structure | semantics| accuracy| notes
structure
Catmull(197H D | E HW
Newellet al. (1972 C/D o/l E
visible D Fuchset al. (1980 C/ID (0]]] E
surface Gordon & Chen(1997) C/D o/l E
determination Warnock(1969 D ! E
Appel (1969 D (0] E
c Naylor (1992 C o/l E
Weiler & Atherton(1977) C | E
Greeneet al. (1993 D | C HW
Zhanget al. (1997) D | C/A HW
Aila (2000 D | C/IA
D Heyet al. (2001) D | C HW
Klosowski & Silva.(2007) D | C HW
Cohen-Or & Shake1995 D ¢} E terrains
visibility Lee & Shin(1997) D (0] E terrains
culling Luebke & George$1995 C | C indoor
Coorg & Teller(19979) C o] C
Hudsonet al. (1997 C (0] C
C Bittneret al. (1998 C (0] C
Wonka & Schmalstie§1999 D (0] C HW
VFP Downset al. (2007 C I C 2iD
Lloyd & Egbert(2002 C | C terrains
visibility c Stewart & Karkanig1998 D | A HW
maps Bittner (20023 C (0]]] E
Whitted (1979 D 0] E
Haines & Greenber986 D | C
Woo & Amanatideg1990 D (0] C
D Williams (1978 D | A
hard Segalet al. (1992 D | A HW
shadows Stamminger & Drettaki$2002 D | A HW
Crow (1977 C/ID O E
Heidmann(1991) C/D (0] E HW
c Chin & Feiner(1989 C (0] E
Chrysanthou & Slatef1995 C O E dynamic
ray-set Heckbert & Hanraha(i1984) C | E
tracing C Amanatldes(1984) C (0] A
Szirmay-Kalos & Purgathofe1 998 D | A HW
McMillan (1997 D I E
point-based Pfist'ere_t aI_. (2000 D | A
rendering D Rusinkiewicz & Levoy(2000 D | A HW
Grossman & Dally(1999 D | A HW
Wandet al. (200) D | A HW

Problem domain structure: D - discrete, C - continuous.

Solution space structure: D - discrete, C - continuous.

Solution space semantics: O - object space, | - image space.

Accuracy: E - exact, C - conservative, A - approximate.

Table 2: Summary of visibility from a point algorithms.

35

problem solution space
domain description domain algorithm structure | semantics| accuracy notes
structure
soft shadows D Heidrichet al. (2000 D | A HW
VLS visibility Wonkaet al. (2000 D (0] C HW
culling C Koltun et al. (2007) D Oo/L C
in21iD Bittner et al. (2007 C L/O C
D Cooket al. (1989 D (0] A
soft shadows Chin & Feiner(1992 C O A
c Chrysanthou & Slatef1997) C (0] A dynamic
Heckbert & Herf(1997) D 1/0 A HW
Soler & Sillion (1998 D /10 A HW
VEPO Cohen & Greenber¢1985 D | A HW
form-factors C Wallaceet al. (1989 D (0] A
Campbell, Il & Fussel(1990 C (0] A
Heckbert(1992 C (0] A
discontinuity c Lischinskiet al. (1992 C (0] A
meshing Drettakis & Fiume(1994) C (0] E
Stewart & Ghali(1994 C (0] E
Durandet al. (2000 D /0 C HW
Schaufletet al. (2000 D (0] C
Bittner (20020 C L E
visibility N_irensteinet al. (2002 C L E _
VFR culling C Airey et al. (1990 D (0] A indoor
Teller & Sequin(1997) C L E indoor 2D
Teller (1992h C L E indoor
Yagel & Ray (1999 D (0] C caves
Stewart(1997) C (0] C terrain
aspect graph C Plantingaet al. (1990 C (0] E
Pocchiola & Vegtef1993 [} L E 2D
visibility Riviere(1997) C L E 2D
complex C Durandet al. (1996 C L E
GV Durandet al. (1993 C (0] E
Duguet & Drettakig2002) C O E/A
Hinkenjann & Miller (1996 D L A 2D
discrete c Blais & Poulin (1998 D L A
structures Chrysanthotet al. (1999 D R A
Gotsmaret al. (1999 D R A

Problem domain structure: D - discrete, C - continuous.

Solution space structure: D - discrete, C - continuous.

Solution space semantics: O - object space, L - line space, R - ray space.
Accuracy: E - exact, C - conservative, A - approximate.

Table 3: Summary of algorithms for visibility from a line segment, visibility from a polygon,
visibility from a region, and global visibility.

36

References

Aila, T. (2000).SurRender Umbra: A Visibility Determination Framework for Dynamic Environments

Master’s thesis, Helsinki University of Technology.

Airey, J.M., Rohlf, J.H. & Brooks, Jr., F.P. (1990). Towards image realism with interactive update rates
in complex virtual building environments. 090 Symposium on Interactive 3D Graphidd—50,

ACM SIGGRAPH.

Amanatides, J. (1984). Ray tracing with conesClmmputer Graphics (SIGGRAPH '84 Proceedings)
vol. 18, 129-135.

Appel, A. (1968). Some techniques for shading machine renderings of solid&IRS 1968 Spring
Joint Computer Confvol. 32, 37—-45.

Arvo, J. & Kirk, D. (1989).A survey of ray tracing acceleration techniqu261-262. Academic Press.

Arvo, J. & Kirk, D. (1990). Particle transport and image synthesis. In F. BasketCethputer Graphics
(Proceedings of SIGGRAPH’'9(3—66.

Berg, M., Kreveld, M., Overmars, M. & Schwarzkopf, O. (199Chmputational Geometry: Algorithms

and ApplicationsSpringer-Verlag, Berlin, Heidelberg, New York.

Bittner, J. (2002a). Efficient construction of visibility maps using approximate occlusion swem-In

ceedings of Spring Conference on Computer Graphics (SCCGI63)-171, Budmerice, Slovakia.

Bittner, J. (2002b)Hierarchical Techniques for Visibility Computatiari?h.D. thesis, Czech Technical

University in Prague.

Bittner, J., Havran, V. & Slak, P. (1998). Hierarchical visibility culling with occlusion trees.Rno-

ceedings of Computer Graphics International '98 (CGI'9807-219, IEEE.

Bittner, J., Wonka, P. & Wimmer, M. (2001). Visibility preprocessing for urban scenes using line space
subdivision. InProceedings of Pacific Graphics (PG'QD76-284, IEEE Computer Society, Tokyo,

Japan.

Blais, M. & Poulin, P. (1998). Sampling visibility in three-spacePioc. of the 1998 Western Computer

Graphics Symposiud5-52.

37

Campbell, Ill, A.T. & Fussell, D.S. (1990). Adaptive mesh generation for global diffuse illumination.
In Computer Graphics (SIGGRAPH '90 Proceedings). 24, 155-164.

Carpenter, L. (1984). The A-buffer, an antialiased hidden surface method. In H. Christians€oned.,
puter Graphics (SIGGRAPH '84 Proceedinggdl. 18, 103-108.

Catmull, E.E. (1975). Computer display of curved surface®rtrceedings of the IEEE Conference on

Computer Graphics, Pattern Recognition, and Data Structute-17.

Chin, N. & Feiner, S. (1989). Near real-time shadow generation using BSP tré&asmputer Graphics
(Proceedings of SIGGRAPH '8%99-106.

Chin, N. & Feiner, S. (1992). Fast object-precision shadow generation for areal light sources using BSP
trees. In D. Zeltzer, edComputer Graphics (1992 Symposium on Interactive 3D Graphios)?25,
21-30.

Chrysanthou, Y. & Slater, M. (1995). Shadow volume BSP trees for computation of shadows in dynamic
scenes. In P. Hanrahan & J. Winget, ed895 Symposium on Interactive 3D Graphi4S-50, ACM
SIGGRAPH, iSBN 0-89791-736-7.

Chrysanthou, Y. & Slater, M. (1997). Incremental updates to scenes illuminated by area light sources.

In Proceedings of Eurographics Workshop on Render@$—114, Springer Verlag.

Chrysanthou, Y., Cohen-Or, D. & Lischinski, D. (1998). Fast approximate quantitative visibility for
complex scenes. IRroceedings of Computer Graphics International '98 (CGI'983-31, IEEE,

NY, Hannover, Germany.

Cohen, M.F. & Greenberg, D.P. (1985). The hemi-cube: A radiosity solution for complex environments.

Computer Graphics (SIGGRAPH '85 Proceedind$, 31-40.

Cohen-Or, D. & Shaked, A. (1995). Visibility and dead-zones in digital terrain n@agsputer Graph-
ics Forum 14, C/171-C/180.

Cohen-Or, D., Chrysanthou, Y., Silva, C. & Durand, F. (2002). A survey of visibility for walkthrough

applicationsTo appear in IEEE Transactions on Visualization and Computer Graphics.

38

Cook, R.L., Porter, T. & Carpenter, L. (1984). Distributed ray tracingCtomputer Graphics (SIG-
GRAPH '84 Proceedings)137-45.

Coorg, S. & Teller, S. (1997). Real-time occlusion culling for models with large occludelPsobeed-

ings of the Symposium on Interactive 3D Graph&3%-90, ACM Press, New York.

Crow, F.C. (1977). Shadow algorithms for computer graph@smputer Graphics (SIGGRAPH 77

Proceedings)11

Downs, L., Mdller, T. & Séquin, C.H. (2001). Occlusion horizons for driving through urban scenes. In
Symposium on Interactive 3D Graphid21-124, ACM SIGGRAPH.

Drettakis, G. & Fiume, E. (1994). A Fast Shadow Algorithm for Area Light Sources Using Backprojec-
tion. In Computer Graphics (Proceedings of SIGGRAPH ,293-230.

Duguet, F. & Drettakis, G. (2002). Robust epsilon visibility appear in Computer Graphics (SIG-
GRAPH’02 Proceedings)

Durand, F. (1999)3D Visibility: Analytical Study and Application®h.D. thesis, Universite Joseph

Fourier, Grenoble, France.

Durand, F., Drettakis, G. & Puech, C. (1996). The 3D visibility complex: A new approach to the
problems of accurate visibility. IRroceedings of Eurographics Rendering Workshop 26256,

Springer.

Durand, F., Drettakis, G. & Puech, C. (1997). The visibility skeleton: A powerful and efficient multi-

purpose global visibility tool. IlComputer Graphics (Proceedings of SIGGRAPH ;88-100.

Durand, F., Drettakis, G., Thollot, J. & Puech, C. (2000). Conservative visibility preprocessing using
extended projections. I@Gomputer Graphics (Proceedings of SIGGRAPH 20069-248.

Floriani, L.D. & Magillo, P. (1995). Horizon computation on a hierarchical terrain mottet. Visual

Computer: An International Journal of Computer Graphit§, 134—149.

Foley, J.D., van Dam, A., Feiner, S.K. & Hughes, J.F. (199®)mputer Graphics: Principles and

Practice Addison-Wesley Publishing Co., Reading, MA, 2nd edn.

39

Fuchs, H., Kedem, Z.M. & Naylor, B.F. (1980). On visible surface generation by a priori tree structures.

In Computer Graphics (SIGGRAPH '80 Proceedings). 14, 124-133.

Funkhouser, T., Carlbom, I., Elko, G., Pingali, G., Sondhi, M. & West, J. (1998). A beam tracing ap-
proach to acoustic modeling for interactive virtual environment€dmputer Graphics (Proceedings

of SIGGRAPH '98)21-32.

Goral, C.M., Torrance, K.K., Greenberg, D.P. & Battaile, B. (1984). Modelling the interaction of light
between diffuse surfaces. Gomputer Graphics (SIGGRAPH '84 Proceedings). 18, 213-222.

Gordon, D. & Chen, S. (1991). Front-to-back display of BSP tréeEE Computer Graphics and
Applications 11, 79-85.

Gortler, S.J., Grzeszczuk, R., Szeliski, R. & Cohen, M.F. (1996). The lumigra@uormputer Graphics
(SIGGRAPH '96 Proceedingshnnual Conference Series, 43-54, Addison Wesley.

Gotsman, C., Sudarsky, O. & Fayman, J.A. (1999). Optimized occlusion culling using five-dimensional

subdivision.Computers and Graphi¢&3, 645—654.

Grant, C.W. (1992)Visibility Algorithms in Image SynthesBh.D. thesis, U. of California, Davis.

Grasset, J., Terraz, O., Hasenfratz, J.M. & Plemenos, D. (1999). Accurate scene display by using visi-

bility maps. InSpring Conference on Computer Graphics and its Applications

Greene, N., Kass, M. & Miller, G. (1993). Hierarchical Z-buffer visibility. @Qomputer Graphics (Pro-
ceedings of SIGGRAPH '93231-238.

Grossman, J.P. & Dally, W.J. (1998). Point sample renderingelmdering Techniques '98 (Proceedings

of Eurographics Rendering WorkshofgpB1-192, Springer-Verlag Wien New York.

Gu, X., Gortier, S.J. & Cohen, M.F. (1997). Polyhedral geometry and the two-plane parameterization.
In J. Dorsey & P. Slusallek, edssurographics Rendering Workshop 199712, Eurographics,
Springer Wein, New York City, NY, iSBN 3-211-83001-4.

Haines, E.A. & Greenberg, D.P. (1986). The light buffer: A ray tracer shadow testing accelé&igtor.

Computer Graphics and Applicatiofn® 6—16.

40

Havran, V. (2000)Heuristic Ray Shooting Algorithm®h.d. thesis, Department of Computer Science

and Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague.

Heckbert, P.S. (1992). Discontinuity meshing for radiosityThird Eurographics Workshop on Ren-
dering 203-216, Bristol, UK.

Heckbert, P.S. & Hanrahan, P. (1984). Beam tracing polygonal obj€csputer Graphics (SIG-
GRAPH’84 Proceedingsi8, 119-127.

Heckbert, P.S. & Herf, M. (1997). Simulating soft shadows with graphics hardware. Tech. rep., CS

Dept., Carnegie Mellon U., cMU-CS-97-104, http://www.cs.cmu.edu/ ph.

Heidmann, T. (1991). Real shadows, real timnis. Universe 18, 28—31, silicon Graphics, Inc.

Heidrich, W., Brabec, S. & Seidel, H. (2000). Soft shadow maps for linear lighterdneedings of
EUROGRAPHICS Workshop on Renderia§9—-280.

Hey, H., Tobler, R.F. & Purgathofer, W. (2001). Real-Time occlusion culling with a lazy occlusion grid.
In Proceedings of EUROGRAPHICS Workshop on Rendglihg—222.

Hinkenjann, A. & Miller, H. (1996). Hierarchical blocker trees for global visibility calculation. Re-

search Report 621/1996, University of Dortmund.

Hudson, T., Manocha, D., J.Cohen, M.Lin, K.Hoff & H.Zhang (1997). Accelerated occlusion culling
using shadow frusta. IRroceedings of the Thirteenth ACM Symposium on Computational Geometry,

June 1997, Nice, France

Kajiya, J.T. (1986). The rendering equation. @omputer Graphics (SIGGRAPH '86 Proceedings)
143-150.

Klosowski, J.T. & Silva., C.T. (2001). Efficient conservative visibility culling using the prioritized-
layered projection algorithmEEE Transactions on Visualization and Computer Graphic865—

379.

Koltun, V., Chrysanthou, Y. & Cohen-Or, D. (2001). Hardware-accelerated from-region visibility using

a dual ray space. IRroceedings of the 12th EUROGRAPHICS Workshop on Rendering

41

Lee, C.H. & Shin, Y.G. (1997). A terrain rendering method using vertical ray coher&heelJournal

of Visualization and Computer Animatio) 97—114.

Levoy, M. & Hanrahan, P. (1996). Light field rendering. In H. Rushmeier, ®iGRAPH 96 Confer-
ence ProceedingsAnnual Conference Series, 31-42, ACM SIGGRAPH, Addison Wesley, held in

New Orleans, Louisiana, 04-09 August 1996.

Lischinski, D., Tampieri, F. & Greenberg, D.P. (1992). Discontinuity meshing for accurate radiosity.

IEEE Computer Graphics and Applicatiqrie, 25—-39.

Lloyd, B. & Egbert, P. (2002). Horizon occlusion culling for real-time rendering of hierarchical terrains.

In Proceedings of the conference on Visualization ©23—-410, IEEE Press.

Luebke, D. & Georges, C. (1995). Portals and mirrors: Simple, fast evaluation of potentially visible
sets. In P. Hanrahan & J. Winget, ed©095 Symposium on Interactive 3D Graphit85—-106, ACM
SIGGRAPH.

McMillan, L. (1997). An image-based approach to three-dimensional computer graphics. Ph.D. Thesis

TR97-013, University of North Carolina, Chapel Hill.

Moller, T. & Haines, E. (1999)Real-Time Renderind\. K. Peters Limited.

Naylor, B.F. (1992). Partitioning tree image representation and generation from 3D geometric models.

In Proceedings of Graphics Interface '9201-212.

Newell, M.E., Newell, R.G. & Sancha, T.L. (1972). A solution to the hidden surface probleRroin

ceedings of ACM National Conference

Nirenstein, S., Blake, E. & Gain, J. (2002). Exact From-Region visibility cullingPtoceedings of
EUROGRAPHICS Workshop on Renderifhi§9—-210.

Pellegrini, M. (1997). Ray shooting and lines in space. In J.E. Goodman & J. O’Rourke;laddhook

of Discrete and Computational Geometchap. 32, 599-614, CRC Press LLC, Boca Raton, FL.

Pfister, H., Zwicker, M., van Baar, J. & Gross, M. (2000). Surfels: Surface elements as rendering
primitives. InComputer Graphics (Proceedings of SIGGRAPH 2038b—342, ACM SIGGRAPH

/ Addison Wesley Longman.

42

Plantinga, H., Dyer, C.R. & Seales, W.B. (1990). Real-time hidden-line elimination for a rotating poly-

hedral scene using the aspect representatidArdoeedings of Graphics Interface '98-16.

Pocchiola, M. & Vegter, G. (1993). The visibility complex. Rroc. 9th Annu. ACM Sympos. Comput.
Geom, 328-337.

Purcell, T.J., Buck, I., Mark, W.R. & Hanrahan, P. (2002). Ray tracing on programmable graphics
hardware. IfComputer Graphics (SIGGRAPH '02 Proceeding®)3-712.

Riviere, S. (1997). Dynamic visibility in polygonal scenes with the visibility complexPioc. 13th
Annu. ACM Sympos. Comput. GepaP1-423.

Rusinkiewicz, S. & Levoy, M. (2000). QSplat: A multiresolution point rendering system for large
meshes. IlComputer Graphics (Proceedings of SIGGRAPH 203d3-352, ACM SIGGRAPH /

Addison Wesley Longman.

Saona-Vzquez, C., Navazo, |. & Brunet, P. (1999). The visibility octree: a data structus®foavi-

gation.Computers and Graphic&3, 635—-643.

Schaufler, G., Dorsey, J., Decoret, X. & Sillion, F.X. (2000). Conservative volumetric visibility with

occluder fusion. IrComputer Graphics (Proceedings of SIGGRAPH 20209-238.

Segal, M., Korobkin, C., van Widenfelt, R., Foran, J. & Haeberli, P. (1992). Fast shadows and lighting

effects using texture mappinGomputer Graphics (SIGGRAPH '92 Proceedind@$), 249-252.

Soler, C. & Sillion, F. (1998). Fast calculation of soft shadow textures using convoluti@oriputer

Graphics (Proceedings of SIGGRAPH '98CM SIGGRAPH.

Stamminger, M. & Drettakis, G. (2002). Perspective shadow mapSIGGRAPH 2002 Conference
Proceedingsb57-562, ACM Press/ ACM SIGGRAPH.

Stewart, A.J. (1997). Hierarchical visibility in terrains. Rroceedings of Eurographics Rendering

Workshop 97 217-228.

Stewart, A.J. & Ghali, S. (1994). Fast computation of shadow boundaries using spatial coherence and

backprojections. Il€omputer Graphics (Proceedings of SIGGRAPH ;281-238.

43

Stewart, A.J. & Karkanis, T. (1998). Computing the approximate visibility map, with applications to
form factors and discontinuity meshing. Rroceedings of the Ninth Eurographics Workshop on

Rendering57-68.

Stolfi, J. (1991)Oriented Projective Geometry: A Framework for Geometric Computatidoademic

Press.

Sutherland, I.E., Sproull, R.F. & Schumacker, R.A. (1974). A characterization of ten hidden-surface

algorithms ACM Computing Surveys, 1-55.

Szirmay-Kalos, L. & Purgathofer, W. (1998). Global ray-bundle tracing with hardware acceleration. In

Ninth Eurographics Workshop on Renderidienna, Austria.

Teller, S.J. (1992a). Computing the antipenumbra of an area light sour€enputer Graphics (Pro-
ceedings of SIGGRAPH '92)39-148.

Teller, S.J. (1992bVisibility Computations in Densely Occluded Polyhedral Environméd?tisD. the-
sis, CS Division, UC Berkeley, tech. Report UCB/CSD-92-708.

Teller, S.J. & ®quin, C.H. (1991). Visibility preprocessing for interactive walkthrough®rbteedings
of SIGGRAPH '9161-69.

Wald, I., Slusallek, P., Benthin, C. & Wagner, M. (2001). Interactive rendering with coherent ray tracing.
In A. Chalmers & T.M. Rhyne, eds5G 2001 Proceedingsol. 20(3) ofComputer Graphics Forum
153-164, Blackwell Publishing.

Wallace, J.R., EImquist, K.A. & Haines, E.A. (1989). A ray tracing algorithm for progressive radiosity.
In SIGGRAPH '89 Proceeding815—-324.

Wand, M., Fischer, M., Peter, I., auf der Heide, F.M. & StraRer, W. (2001). The randomized z-buffer
algorithm: Interactive rendering of highly complex scenesCbmputer Graphics (Proceedings of

SIGGRAPH 2001)361-370, ACM SIGGRAPH.

Warnock, J. (1969). A hidden-surface algorithm for computer generated half-tone pictures. Tech. Rep.

TR 4-15, NTIS AD-733 671, University of Utah, Computer Science Department.

44

Weiler, K. & Atherton, P. (1977). Hidden surface removal using polygon area sortingoinputer
Graphics (SIGGRAPH 77 Proceeding@l4—-222.

Whitted, T. (1979). An improved illumination model for shaded displayzémputer Graphics (Special
SIGGRAPH '79 Issueyol. 13, 1-14.

Williams, L. (1978). Casting curved shadows on curved surfaceSomputer Graphics (SIGGRAPH
'78 Proceedings)270-274.

Wonka, P. & Schmalstieg, D. (1999). Occluder shadows for fast walkthroughs of urban environments.

In Computer Graphics Forum (Proceedings of EUROGRAPHICS ®B)}60, Blackwell Publishers.

Wonka, P., Wimmer, M. & Schmalstieg, D. (2000). Visibility preprocessing with occluder fusion for
urban walkthroughs. IRroceedings of EUROGRAPHICS Workshop on Rendgerihg82.

Woo, A. & Amanatides, J. (1990). Voxel occlusion testing: A shadow determination accelerator for ray

tracing. InProceedings of Graphics Interface '9913-220.

Woo, A., Poulin, P. & Fournier, A. (1990). A survey of shadow algorithitBEE Computer Graphics
and Applications10, 13-32.

Yagel, R. & Ray, W. (1995). Visibility computation for efficient walkthrough of complex environments.

Presence: Teleoperators and Virtual Environmebts

Zhang, H., Manocha, D., Hudson, T. & Hoff lll, K.E. (1997). Visibility culling using hierarchical

occlusion maps. IlComputer Graphics (Proceedings of SIGGRAPH ;97)-88.

45

	Introduction
	Taxonomy of visibility problems
	Problem domain
	The dimension of visibility problems

	Visibility along a line
	Visibility from a point
	Visibility from a line segment
	Visibility from a polygon
	Visibility from a region
	Global visibility
	Summary

	Visibility problems and algorithms
	Visibility along a line
	Visibility from a point
	Visible surface determination
	Visibility maps
	Back face culling and view frustum culling
	Visibility culling
	Hard shadows
	Global illumination
	Image-based and Point-based rendering

	Visibility from a line segment
	Visibility culling
	Soft shadows

	Visibility from a polygon
	Soft shadows
	Form-factors

	Visibility from a region
	Visibility culling
	Sound propagation

	Global visibility

	Visibility algorithm design
	Preparing the data
	Scene restrictions
	Occluders and occludees
	Volumetric scene representation

	The core: solution space data structures
	Accuracy
	Occluder fusion

	Achieving performance
	Scalability
	Visibility preprocessing
	Acceleration data structures
	Use of graphics hardware

	Visibility algorithm template
	Summary

	Conclusion

